References: |
-
N. Garay-Vitoria and J. Gonzalez-Abascal, ``Intelligent wordprediction to enhance text input rate (a syntactic analysisbased word-prediction aid for people with severe motor and speech disability),’’ in Proceedings of the 2nd international conference on Intelligent user interfaces, pp. 241—244, 1997.
-
M. Haque, M. Habib, M. Rahman et al., ``Automated word prediction in bangla language using stochastic language models,’’ arXiv preprint arXiv:1602.07803, 2016.
-
N. Garay-Vitoria and J. Abascal, ``Text prediction systems: a survey,’’ Universal Access in the Information Society, vol. 4, no. 3, pp. 188--203, 2006.
-
T. S. Rani and R. S. Bapi, ``Analysis of n-gram based promoter recognition methods and application to whole genome promoter prediction,’’ In silico biology, vol. 9, no. 1, 2, pp. S1--S16, 2009.
-
O. F. Rakib, S. Akter, M. A. Khan, A. K. Das, and K. M. Habibullah, ``Bangla word prediction and sentence completion using gru: an extended version of rnn on n-gram language model,’’ in 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). IEEE, pp. 1--6, 2019,
-
S. Sarker, M. E. Islam, J. R. Saurav, and M. M. H. Nahid, ``Word completion and sequence prediction in bangla language using trie and a hybrid approach of sequential lstm and n-gram,’’ in 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT). IEEE, pp. 162-- 167, 2020.
-
S. Hochreiter, ``The vanishing gradient problem during learning recurrent neural nets and problem solutions,’’ International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107--116, 1998.
-
S. Hochreiter and J. Schmidhuber, ``Long short-term memory,’’ Neural computation, vol. 9, no. 8, pp. 1735--1780, 1997.
-
K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, ``Learning phrase representations using rnn encoder-decoder for statistical machine translation,’’ arXiv preprint arXiv:1406.1078, 2014.
-
M. Sundermeyer, R. Schluter, and H. Ney, ``Lstm neural networks for language modeling,’’ in Thirteenth annual conference of the international speech communication association, 2012.
-
Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, ``A neural probabilistic language model,’’ Journal of machine learning research, vol. 3, no. Feb, pp. 1137--1155, 2003.
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ``Distributed representations of words and phrases and their compositionality,’’ in Advances in neural information processing systems, 2013, pp. 3111--3119.
-
P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ``Enriching word vectors with subword information,’’ Transactions of the Association for Computational Linguistics, vol. 5, pp. 135-- 146, 2017.
-
A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, ``Bag of tricks for efficient text classification,’’ arXiv preprint arXiv:1607.01759, 2016.
-
S. Bickel, P. Haider, and T. Scheffer, ``Predicting sentences using ngram language models,’’ in Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 193- -200, 2005.
-
G. L. Prajapati and R. Saha, ``Reeds: Relevance and enhanced entropy based dempster shafer approach for next word prediction using language model,’’ Journal of Computational Science, vol. 35, pp. 1-11, 2019.
-
K. Trnka, J. McCaw, D. Yarrington, K. F. McCoy, and C. Pennington, ``User interaction with word prediction: The effects of prediction quality,’’ ACM Transactions on Accessible Computing (TACCESS), vol. 1, no. 3, pp. 1--34, 2009.
-
H. X. Goulart, M. D. Tosi, D. S. Goncalves, R. F. Maia, and G. A. Wachs-Lopes, ``Hybrid model for word prediction using naive bayes and latent information,’’ arXiv preprint arXiv:1803.00985, 2018.
-
G. Szymanski and Z. Ciota, ``Hidden markov models suitable for text generation,’’ in WSEAS International Conference on Signal, Speech and Image Processing (WSEAS ICOSSIP 2002). Citeseer, pp. 3081--3084, 2002
-
T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur, ``Recurrent neural network based language model.’’ in Interspeech, vol. 2, no. 3. Makuhari, pp. 1045— 1048, 2010
-
C. Zhou, C. Sun, Z. Liu, and F. Lau, ``A c-lstm neural network for text classification,’’ arXiv preprint arXiv:1511.08630, 2015.
-
S. Sarker, M. E. Islam, J. R. Saurav, and M. M. H. Nahid, ``Word completion and sequence prediction in bangla language using trie and a hybrid approach of sequential lstm and n-gram,’’ in 2nd International Conference on Advanced Information and Communication Technology (ICAICT). IEEE, 2020, pp. 162—167, 2020
-
M. Bhuyan and S. Sarma, ``An n-gram based model for predicting of word-formation in assamese language,’’ Journal of Information and Optimization Sciences, vol. 40, no. 2, pp. 427--440, 2019.
-
P. P. Barman and A. Boruah, ``A rnn based approach for next word prediction in assamese phonetic transcription,’’ Procedia computer science, vol. 143, pp. 117--123, 2018.
-
R. Sharma, N. Goel, N. Aggarwal, P. Kaur, and C. Prakash, ``Next word prediction in hindi using deep learning techniques,’’ in 2019 International Conference on Data Science and Engineering (ICDSE). IEEE, pp. 55—60, 2019,
-
K. Shakhovska, I. Dumyn, N. Kryvinska, and M. K. Kagita, ``An approach for a next-word prediction for ukrainian language,’’ Wireless Communications and Mobile Computing, vol. 2021, 2021.
-
R. Rahman, ``Robust and consistent estimation of word embedding for bangla language by fine-tuning word2vec model,’’ in 2020 23rd International Conference on Computer and Information Technology (ICCIT). IEEE, pp. 1--6, 2020
-
Z. S. Ritu, N. Nowshin, M. M. H. Nahid, and S. Ismail, ``Performance analysis of different word embedding models on bangla language,’’in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP). IEEE, pp. 1--5, 2018
-
O. F. Rakib, S. Akter, M. A. Khan, A. K. Das, and K. M. Habibullah, ``Bangla word prediction and sentence completion using gru: an extended version of rnn on n-gram language model,’’ in 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). IEEE, pp. 1—6, 2019
-
M. S. Islam, S. S. S. Mousumi, S. Abujar, and S. A. Hossain, ``Sequenceto-sequence bangla sentence generation with lstm recurrent neural networks,’’ Procedia Computer Science, vol. 152, pp. 51--58, 2019
-
A. Joulin, M. Cisse, D. Grangier, H. Jegou et al., ``Efficient softmax approximation for gpus,’’ in International conference on machine learning. PMLR, pp. 1302—1310, 2017
-
T. Mikolov, K. Chen, G. Corrado, and J. Dean, ``Efficient estimation of word representations in vector space,’’ arXiv preprint arXiv:1301.3781, 2013
-
A. Pal and A. Mustafi, ``Vartani spellcheck--automatic contextsensitive spelling correction of ocr-generated hindi text using bert and levenshtein distance,’’ arXiv preprint arXiv:2012.07652, 2020.
-
Y. Hong, X. Yu, N. He, N. Liu, and J. Liu, ``Faspell: A fast, adaptable, simple, powerful chinese spell checker based on dae-decoder paradigm,’’ in Proceedings of the 5th Workshop on Noisy Usergenerated Text (W-NUT 2019), pp. 160—169, 2019,
|