• Printed Journal
  • Indexed Journal
  • Peer Reviewed Journal
Journal of Applied Science & Engineering

Dhaka University Journal of Applied Science & Engineering

Issue: Vol. 7, No. 2, July 2022
Title:

Design and simulation of Zeonex Based Suspended Microstructure Photonic Crystal Fiber for Chemical Sensing Application.

Authors:
  • Md. Rakibul Islam
    Department of Electrical and Electronic Engineering, Mymensingh Engineering College, Mymensingh, Bangladesh
  • Tabassum Jannat Ritu
    Department of Electrical and Electronic Engineering, Mymensingh Engineering College, Mymensingh, Bangladesh
  • Saeed Mahmud Ullah*
    Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh
DOI:
Keywords:

Effective material loss, confinement loss, fiber sensor, sensitivity, suspended

Abstract:

Over the last few years for sensing applications in terahertz regime photonic crystal fiber (PCF) has gained attention quite extensively. The optical characteristics of photonic crystal fiber can be controlled by fine-tuning of the structural parameters like core radius and effecctive area. In this context, a terahertz sensor based on a hollow-core photonic crystal fiber has been developed for chemical identification in the terahertz frequency range with very low loss. The proposed structure contains hexagonal manner sectored suspension type cladding and hexagonal manner sectored core region, all the sector are formed by zeonex based struts. To investigate the optical characteristics of developed design, finite element method (FEM) based COMSOL multiphysics v.5.4a software has been used. The simulation result shows the sensitivity of 83.37% and 83.63% at the optimum condition in x-polarization mode for ethanol and benzene respectively with low effective material loss of 0.0291 cm−1 and low confinement loss of 1.87×10-13 cm-1. Moreover, the developed design implementation is possible in the existing fabrication method. Physical features and comparative performance analysis are also showed in this research.

References:
  1. L D Coelho, O Gaete, N Hanik. An algorithm for global optimization of optical communication systems. AEÜ- International Journal of Electronics and Communications, 63(7): 541–550, 2009
  2. B. Furch, Z. Sodnik, H. Lutz, Optical communications in space-a challenge for Europe. AEÜ-International Journal of Electronics and Communications, 56(4): 223–231, 2002.
  3. R. C. Jorgenson, S. S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B, Chemical, 12(3): 213–220, 1993.
  4. Z. Xu, X. Chen, H. N. Kim, J. Yoon, Sensors for the optical detection of cyanide ion. Chemical Society Reviews, 39(1): 127–137, 2010.
  5. X. Sang, P. L. Chu, and C. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Optical and Quantum Electronics, 37(10): 965–994, 2005.
  6. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Optics Letters, 22(13): 961–963, 1997.
  7. M. Morshed, M. H. Imran, T. K. Roy, M. S. Uddin, and S. M. A. Razzak, “Microstructure core photonic crystal fiber for gas sensing applications,” Applied Optics, 54(29): 8637–8643, 2015.
  8. J. M. Fini, Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology, 15(6): 1120– 1128, 2004.
  9. X. D. Wang, O. S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry, 88(1): 203– 227, 2016.
  10. X. Yang, Y. Lu, B. Liu, J. Yao, Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics, 12(2): 489–496, 2017.
  11. R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, AbdelMalek F, Aggoun A. A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics Journal, 6(4): 1–11, 2014.
  12. K. Saitoh, M. Koshiba, Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters, 15(10): 1384–1386, 2003.
  13. M. Yamanari, Fiber-based polarization-sensitive Fourier domain optical coherence tomography. Dissertation for the Doctoral Degree. Tsukuba: University of Tsukuba.
  14. N A. Mortensen, Effective area of photonic crystal fibers. Optics Express, 10(7): 341–348, 2002.
  15. S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and T. Farah, “Hybrid photonic crystal fiber in chemical sensing,” SpringerPlus, vol. 5, no. 748, pp. 1-11, 2016.
  16. B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sens. and Biosens. App., vol. 12, pp. 36-42, 2017.
  17. Md. Ahasan Habib, Md. Selim Reza,” Hybrid-core microstructure fiber for chemical identification in terahertz regime” ICASERT 2019.
  18. M.S. Islam, J. Sultana, A.A. Rifat, A. Dinovitser, B.W.-H. Ng, D. Abbott, Terahertz sensing in a hollow core photonic crystal fiber, IEEE Sensor Journal 1558–1748 c, 2018.
  19. H. Ademgil, Highly sensitive octagonal photonic crystal fiber based sensor, Optik 125 (20) 6274–6278, 2014.
  20. M.S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M.R. Islam, B.W.-H. Ng, D. Abbott, A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime, IEEE Sens. J. 18 (2) 575–582, 2018.
  21. Ashish Kumar Ghunawat, Sharad Sharma, Sourabh Sahu, Ghanshyam Singh, Highly Sensitive Octagonal Photonic Crystal Fiber for Ethanol Detection, Springer Optical and Wireless Technologies (pp 457-466, volume 546).
  22. M. F. H. Arif, and M. J. H. Biddut, “A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications,” Sens. and Biosens. App., vol. 12, pp. 8-14, 2017.
  23. B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sens. and Biosens. App., vol. 12, pp. 36-42, 2017
  24. Md. Ahasan Habiba , Md. Shamim Anowera , Lway Faisal Abdulrazakb , Md. Selim Rezac,Hollow core photonic crystal fiber for chemical identification in terahertz regime, ELSIVER, Optical Fiber Technology, Volume 52, 101933, November 2019.
  25. G. Woyessa, A. Fasano, C. Markos, et al., Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing, Opt. Mater. Express 7 (1) 286–295, 2017.
  26. Md. Ahasan Habib, Md. Selim Reza, Hybrid-core microstructure fiber for chemical identification in terahertz regime, ICASERT 2019.
  27. M.S. Islam, J. Sultana, K. Ahmed, M.R. Islam, A. Dinovister, B.W.H. Ng, D. Abbott, A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime, IEEE Sens. J. 18 (2) 575–582, 2018.
  28. M.S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M.R. Islam, B.W.-H. Ng, D. Abbott, Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel.
  29. I.K. Yakasai, P.E. Abas, H. Suhaimi, F. Begum, Low loss and highly birefringent photonic crystal fibre for terahertz applications, Optik - International Journal for Light and Electron Optics 206, 2020.
  30. M.M. Rahman, F.A. Mou, M.I.H. Bhuiyan, M.R. Islam, Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime, Opt. Fiber Technol. 55, 102158, 2020.
  31. K. Ahmed, F. Ahmed, S. Roy, B.K. Paul, M.N. Aktar, D. Vigneswaran, M.S. Islam, Refractive Index Based Blood Components Sensing in Terahertz Spectrum, IEEE Sensors Journal 19 (9) 2019.
  32. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima- Marques, T.M. Monro, 3D-printed extrusion dies: a versatile approach to optical material processing, Opt. Mater. Exp 4 (8), 1494–1504, 2014
  33. Z. Liu, C. Wu, M. Vincent Tse, H. Yaw Tam, Fabrication, characterization, and sensing applications of a highbirefringence suspended-core fiber, Journal of Lightwave Technology 32 (11), 2014.
  34. W. Talataisong, R. Ismaeel, S.R. Sandoghchi, T. Rutirawut, G. Ntopley, M. Beresna, G. Bambilla, Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer, Optics Express 26 (24), 2018.