References: |
-
D. Bong, K. Lai, and A. Joseph, “Automatic Road Network Recognition and Extraction for Urban Planning,” International Science Index, Civil and Environmental Engineering, vol. 3, no. 5, pp. 205–212, 2009.
-
M. C. Weiger, S. Ahmed, E. S. Welf, and J. M. Haugh, “Directional persistence of cell migration coincides with stability of asymmetric intracellular signaling,” Biophysical Journal, vol. 98, no. 1, pp. 67–75, 2010, doi: 10.1016/j.bpj.2009.09.051.
-
S. Ahmed et al., “Poly(vinylmethylsiloxane) elastomer networks as functional materials for cell adhesion and migration studies,” Biomacromolecules, vol. 12, no. 4, pp. 1265–1271, 2011, doi: 10.1021/bm101549y.
-
K. K. L. Wong, Z. Sun, J. Tu, S. G. Worthley, J. Mazumdar, and D. Abbott, “Medical image diagnostics based on computer-aided flow analysis using magnetic resonance images,” Computerized Medical Imaging and Graphics, vol. 36, no. 7, pp. 527–541, 2012, doi: 10.1016/j.compmedimag.2012.04.003.
-
M. Waseem Khan, “A Survey: Image Segmentation Techniques,” International Journal of Future Computer and Communication, vol. 3, no. 2, pp. 89–93, 2014, doi: 10.7763/ijfcc.2014.v3.274.
-
T. Ahmed, M. S. Munir, and S. Ahmed, “Segmentation-based Image Analysis Tool for Surveying and Statistical Applications,” International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 11, no. 2, pp. 25–32, 2018, doi: 10.14257/ijsip.2018.11.2.03.
-
J. Rittscher, “Characterization of biological processes through automated image analysis,” Annual Review of Biomedical Engineering, vol. 12, no. 1, pp. 315–344, 2010, doi: 10.1146/annurev-bioeng-070909-105235
-
N. Sharma et al., “Automated medical image segmentation techniques,” Journal of Medical Physics, vol. 35, no. 1, pp. 3–14, 2010, doi: 10.4103/0971-6203.58777.
-
F. P. M. Oliveira and J. M. R. S. Tavares, “Medical image registration: A review,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 17, no. 2, pp. 73–93, 2014, doi: 10.1080/10255842.2012.670855.
-
L. Thomas, H. R. Byers, J. Vink, and I. Stamenkovic, “CD44H regulates tumor cell migration on hyaluronate-coated substrate,” Journal of Cell Biology, vol. 118, no. 4, pp. 971–977, 1992, doi: 10.1083/jcb.118.4.971
-
E. S. Welf, S. Ahmed, H. E. Johnson, A. T. Melvin, and J. M. Haugh, “Migrating fibroblasts reorient directionality: By a metastable, PI3K-dependent mechanism,” Journal of Cell Biology, vol. 197, no. 1, pp. 105–114, 2012, doi: 10.1083/jcb.201108152.
-
R. T. Böttcher and C. Niehrs, “Fibroblast growth factor signaling during early vertebrate development,” Endocrine Reviews, vol. 26, no. 1, pp. 63–77, 2005, doi: 10.1210/er.2003-0040.
-
C. Migration et al., “Migration 101 - An Introduction to Cell Migration,” 2014. http://www.cellmigration.org/science/
-
I. C. Schneider and J. M. Haugh, “Spatial Analysis of 3′ Phosphoinositide Signaling in Living Fibroblasts: II. Parameter Estimates for Individual Cells from Experiments,” Biophysical Journal, vol. 86, no. 1 I, pp. 599–608, 2004, doi: 10.1016/S0006-3495(04)74138-7
-
A. T. Sasaki and R. A. Firtel, “Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR,” European Journal of Cell Biology, vol. 85, no. 9–10, pp. 873–895, 2006, doi: 10.1016/j.ejcb.2006.04.007
-
T. Brock, “ The PI3K Pathway: Fast Forward for Cancer,” 2009. https://www.caymanchem.com/news/the-pi3k-pathway-fast-forward-for-cancer
-
S. A. Eccles, “Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention,” International Journal of Developmental Biology, vol. 48, no. 5–6, pp. 583–598, 2004, doi: 10.1387/ijdb.041820se.
-
P. Martin and S. M. Parkhurst, “Parallels between tissue repair and embryo morphogenesis,” Development, vol. 131, no. 13, pp. 3021–3034, 2004, doi: 10.1242/dev.01253
-
R. J. Petrie, A. D. Doyle, and K. M. Yamada, “Random versus directionally persistent cell migration,” Nature Reviews Molecular Cell Biology, vol. 10, no. 8, pp. 538–549, 2009, doi: 10.1038/nrm2729.
-
N. Dey, P. De, and B. Leyland-Jones, “PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials,” Pharmacology and Therapeutics, vol. 175, pp. 91–106, 2017, doi: 10.1016/j.pharmthera.2017.02.037.
-
M. K. Ediriweera, K. H. Tennekoon, and S. R. Samarakoon, “Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance,” Seminars in Cancer Biology, vol. 59, pp. 147–160, 2019, doi: 10.1016/j.semcancer.2019.05.012.
-
E.-J. Jung, J. H. Suh, W. H. Kim, and H. S. Kim, “Clinical significance of PI3K/Akt/mTOR signaling in gastric carcinoma.,” International journal of clinical and experimental pathology, vol. 13, no. 5, pp. 995–1007, 2020.
-
S. Matsuda, Y. Ikeda, M. Murakami, Y. Nakagawa, A. Tsuji, and Y. Kitagishi, “Roles of PI3K/AKT/GSK3 Pathway Involved in Psychiatric Illnesses,” Diseases, vol. 7, no. 1. p. 22, 2019. doi: 10.3390/diseases7010022.
-
A. Huttenlocher, “Cell polarization mechanisms during directed cell migration,” Nature Cell Biology, vol. 7, no. 4, pp. 336–337, 2005, doi: 10.1038/ncb0405-336
-
V. Kölsch, P. G. Charest, and R. A. Firtel, “The regulation of cell motility and chemotaxis by phospholipid signaling,” Journal of Cell Science, vol. 121, no. 5, pp. 551–559, 2008, doi: 10.1242/jcs.023333
-
S. P. Palecek, J. C. Loftust, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz, “Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness,” Nature, vol. 385, no. 6616, pp. 537–540, 1997, doi: 10.1038/385537a0
-
S. L. Gupton and C. M. Waterman-Storer, “Spatiotemporal Feedback between Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration,” Cell, vol. 125, no. 7, pp. 1361–1374, 2006, doi: 10.1016/j.cell.2006.05.029
-
T. Söllradl, K. Chabot, U. Fröhlich, M. Canva, P. G. Charette, and M. Grandbois, “Monitoring individual cell-signaling ac-tivity using combined metal-clad waveguide and surface-en-hanced fluorescence imaging,” Analyst, vol. 143, no. 22, pp. 5559–5567, 2018, doi: 10.1039/c8an00911b
-
Q. Ni, S. Mehta, and J. Zhang, “Live-cell imaging of cell sig-naling using genetically encoded fluorescent reporters,” FEBS Journal, vol. 285, no. 2, pp. 203–219, 2018, doi: 10.1111/febs.14134
-
D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total in-ternal reflection fluorescent microscopy,” Journal of Micros-copy, vol. 129, no. 1, pp. 19–28, 1983, doi: 10.1111/j.1365-2818.1983.tb04158.x
-
D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic, vol. 2, no. 11, pp. 764–774, 2001, doi: 10.1034/j.1600-0854.2001.21104.x
-
J. A. Steyer and W. Almers, “A real-time view of life with-in 100 NM of the plasma membrane,” Nature Reviews Mo-lecular Cell Biology, vol. 2, no. 4, pp. 268–275, 2001, doi: 10.1038/35067069
-
N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods, vol. 2, no. 12, pp. 905–909, 2005, doi: 10.1038/nmeth819
-
N. C. Shaner, G. H. Patterson, and M. W. Davidson, “Advances in fluorescent protein technology,” Journal of Cell Science, vol. 120, no. 24, pp. 4247–4260, 2007, doi: 10.1242/jcs.005801
-
A. R. Houket al., “Membrane tension maintains cell polari-ty by confining signals to the leading edge during neutrophil migration,” Cell, vol. 148, no. 1–2, pp. 175–188, 2012, doi: 10.1016/j.cell.2011.10.050.
|