DUJASE Vol. 3(1) 55-60, 2015 (January)

ACM: An Efficient Exact Algorithm for Finding Planted Motif in Biological Sequences.
S. M. Igbal Morshed' and Saifuddin Md. Tareeq'
'Department of Computer Science and Engineering, University of Dhaka, Dhaka 1000, Bangladesh

E-mail: ighbal bgd@gmail.com and smtareeq(@cse.univdhaka.edu

Received on 16. 02. 2014, Accepted for publication on 14.07. 2014.
Abstract

Motifs are patterns found in biological sequences that are significant for understanding gene function, human
disease, drug design, etc. Finding motif is one of the most important and challenging tasks in bioinformatics. In this
paper a new algorithm named ATGC Counter Map (ACM) is proposed to solve motif finding problem. The proposed
algorithm provides several features. First, a new data structure named ATGC Counter Map is proposed to reduce
the search space. Second, as an exact algorithm it guarantees to find motif from input sequences. And third,
experimental results show that the algorithm outperforms three of the well-known exact algorithms by (i) solving
challenging instances that these existing algorithms failed to solve and by (ii) reducing run time for larger motif

sequences.

Keywords: ATGC counter Map, Planted Motif Search,
Chque Finding, Profile Matrix, Consensus Motif,

1. Introduction

Many significant biological problems have been solved by
discovery of patterns in DNA and protein sequences. For
instance, identification of patterns in nucleic acid sequences
has helped in determining open reading frames, identifying
promoter elements of genes, 1dentifying intron/exon splicing
sites, locating RNA degradation signals etc. In case of
protein sequence, pattern identification helped in domain
identification, protease cleavage site location, signal peptide
identification, protein degradation element identification,
short functional motif’ discovery etc. Motifs are patterns
found in biological sequences which are important for
understanding many biological subjects like gene function,
human disease, drug design etc. As a result, motif
tuentification plays a significant role in biological studies.
The motif search problem has attracted many researchers
over last two decades. In literature, many versions of the
motif finding problem have been enumerated. Examples
include Simple Motif Search (SMS), Planted Motif Search
(PMS)-also known as (I, d) motif search, and Edit-distance-
based Motf Search (EMS). In this paper, focus will be on
the PMS problem. "D’

PMS 1s stated as follows. Given n sequences and two
mtegers, motif length [and mismatches (substitutions)
allowed d as mput. For simplicity, it is assumed that the
length of each sequence is m. The problem is to identify all
strings M of length [such that M occurs in each of the n
scquences with at most d mismatches. Formally, string M
has to satisfy the following constraint: there exists a string
M; of length [in sequence i, for every (I < i <n), such
that the number of mismatches between M and M, is less
than or equal to d. String M is called a motif. For example,
if the input sequences are GCGCGAT, CAGGTGA and
CGATGCC; Il = 3and d = 1, then GAT and GTG are some
of the (3,1) motifs.

PMS is a well-studied problem and it has been shown to be
NP-hard. As a result, all known exact algorithms for PMS
take exponential time in some of the parameters in the worst
case. Two kinds of algorithms have been proposed in the
literature for PMS: exact and approximate. While an exact
algorithm always finds the correct motif, an approximate
algorithm may not always find the correct motif. Typically,
approximate algorithms tend to be faster than exact
algorithms. Some approximate algorithms are due to Bailey
and Elkan [1], Buhler and Tompa [2], Lawrence et. al. [10],
Pevzner and Sze [11]. These algorithms are based on local
search techniques such as Gibbs sampling and expectation
maximization. Some other approximate algorithms are:
PROJECTION [2], MULTIPROFILER [8], Pattern
Branching [12], CONSENSUS [7]. GibbsDNA [10].
MEME [1], and ProfileBranching [12].

Although approximate algorithms are acceptable in some
cases In practice, exact algorithms are preferable since they
are guaranteed to report correct (I, d) motifs. For biologists,
correct motifs found by an algorithm could be much more
important than its run time. Considering this, in this paper,
focus is given on efficient exact algorithms. Some exact
algorithms are due to Dinh er. al. [4][5]. Davila er. al [3],
Rajasekaran er. al [13], Eskin and Pevzner [6]. Some
efficient exact algorithms are MITRA-count [6]. MITRA-
graph [6] and PMS2 [13].

In this paper a new motif finding algorithm called ACM is
proposed. This new algorithm has the following
contributions. First, it presents a new data structure, named
ATGC Counter Map to reduce the search space which
essentially reduces the run time of the algorithm. Second,
the proposed algorithm is an exact algorithm. Therefore it
guarantees to detect correct motif from the sequence. Third,
performance of the proposed algorithm is compared with
three existing exact algorithms. The proposed algorithm
outperforms these exact algorithms in terms of run time and
instance solving. In the following sections the details of the
proposed algorithm is discussed. ‘

(]

- Proposed Methods of Motif Finding
2.1 Notations and definitions

In this section some notations and definitions are introduced
that will help to describe the proposed algorithm clearly.

Definition 1. A string x = x[1]....x[l] of length [is called
an [-mer. Set of all [-mers from input sequence is denoted as
5,

Definition 2. Given two strings x and y of equal length, the
Hamming distance between x and y, denoted by dy(x,v) 1s
the number of mismatches between them.

Definition 3. A string C, 1s called ATGC count of an I-mer
x 1 €, 15 of the form <number of A in x> . <number of T
in x> .<number of G in x>.<number of C mn x> For
example, ATGC count of [-mer AATCCG 1s 2.1.1.2 . In
general any ATGC count is denoted by C whereas for a
specific [-mer x ATGC count is denoted by C,..

Definition 4. Given two ATGC Count €, and €, where [13
same, the Count distance between Cy and (,,, denoted by
d¢(Cy, Cy) is the total number of difference in number of
AT.G and C. For example, Let, {, = 1.3.2.1 and C, =
2122, then de(Ci Cy) =T + 24+ 0+ 1) = 4

Definition 5. A sct of ATGC Count C,, is called Neighbor
of an ATGC Count C, if dC(Cx, CJ’L') < 2d and C,, is greater
than C,. It is denoted by N(C, d). For example- neighbor of

€-1.1.2.1 for d=1 are {1.1.3.0, 1.2.2.0, 2.1.2.0, 1.2.1.1,
2.1.1.1,1.2.2.1},

Definition 6. A7GC Counter Map data structure is a map
data structure containing (key,value) pair where key is
ATGC count €, and value is list of [-mers which have same
number of A T.G,C as C's internal °." separated value
represents.

Definition 7. For a key each [-mer stored in the value is
called its member. A member is denoted as p. For example,
members of C=1.1.2.1 can be patterns ATGGC, GGCAT,
TACGG ete. where all patterns have same number of
AJT,G,C as € represents. A member contains two lists, First
one 1s Current Neighbor, which contains all [-mers x such
that dy (¢, x) < 2d and C, = €, where x € §. Second one
1s Previous Neighbor, which contains all [-mers x such that
dy(u,x) < 2dand C, < C, wherex €S

Definition 8. For a key=C, the Neighbor of the key are all
the key which contains the value from N(C, k), where
le = I to 2d. For all neighbor key, C is defined as home key.

Definition 9. For cach member u, Member group of u
denoted by y contains all [-mers x such that dy (¢, x) < 2d
and x € S. Member group contains the member itself,
current neighbor and previous neighbor of the member.

S. M. Igbal Morshed and Saifuddin Md. Tareeq

Definition 10. Given a set of n strings S;, ..., S, of length
m each, a string M of length [is called an ([, d)-motif of the
strings 1f there are at least n strings such that the Hamming
distance between each one of them and M is no more than
d. M is called an (I, d)-motif.

2.2 ATGC Counter Map Algorithm
2.2.1 Overview of the Algorithm

ACM algorithm uses ATGC Counter Map to store each (-
mer. Then for each key in map it traverses the neighbor of
the key. To do this proposed NeighborTraverse algorithm is
used. By traversing all the neighbors, for each member in
key. its member group is stored. Then a graph for cach
member group is created using MITRA [6] algorithm.
MITRA [6] algorithm made some improvements on
WINNOWER [11] algorithm for creating such graph.
Finally, clique finding algorithm described in [9] is used to
find clique of size n in the graph. If a clique of size greater
than or equals n is found, a profile matrix for the nodes of
the clique is created. From profile matrix, a consensus string
o 1s formed. If for all nodes of clique, hamming distance
between a node and consensus string dy, (x;, 0) < d, where
1 =i < n, then this consensus string ¢ 1s our desired motif.
Otherwise, there 15 no motif.

Here the ACM algorithm is described in three subsections.
In subsection 2.2.2 ATGC Counter Map data structure is
discussed. In subsection 2.2.3 NeighborTraverse algorithm
is presented and how it is used to find the neighbor of a key
is described. Also how a member group of a member in the
key 1s stored 1s described in this section. And finally in
subsection 2.2.4 how a graph 1s created from member group
and how clique finding algorithm i1s implemented on the
graph to find the motif is discussed.

2.2.2 ATGC Counter Map data structure

ATGC Counter Map data structure uses the map data
structure to store each [-mer in §. Map data structure stores
(key, value) pair where each key is unique. In ACM
algorithm, ATGC count 1s used as key and corresponding
list of [-mer (i.e. members) as value. ATGC Counter Map 1s
created by the following Create ACM procedure as given in
algorithm 1.

Algorithm 1 Create ATGC Counter Map

1 procedure Create ACM(map M)

2i for each [-mer € S do

3 compute its ATGC count .

4: if € 15 already present in the map as a key then
5: push l-mer at the back of the member list.
6: else

VOM: An Efficient Exact Algorithm for Finding Planted Motif in Biological Sequences. 57

msert ¢ in M as key

8: push the [-mer as value of key = (
O end if

10: end for

Ll: end procedure

For example, insertion of the [-mers 1 TGAGG, ATTGC,
\GTGC, AGAGC, AGTAC, TTACC, GAGTG, AGTTC}
m ACM where | = 5 is illustrated in Fig. 1. As the ATGC
Counter Map is sorted by key value, inserted [-mers appear
m sorted order of its ATGC Count value.

Koy (ATGC Count) | Value {(Members)

1 AGTGC J

’ Lol g | |
I

(130 J-{ verss [onore |
ans | e |
! _’17.7.71.-]- 1 *;** {[7_[\1!7(;(7 _} i -I-\(_%Vlii:(t “_‘
‘ 2021 | [AGAG |

| y e -

Fig. 1: ATGC Counter Map after insertion of the [-mers
FGAGG, ATTGC, AGTGC, AGAGC, AGTAC., TTACC,
AGTG, AGTTC! where [= 5. This map is sorted by

ATGC Count Value

Complexity of insertion is same as the complexity of

mserting inte a map which s O(log K) where k is the size
'['the map which is the total number of ATGC Count value.

2.2.3 Neighbor Traversing Algorithm

Ater building up ATGC Counter Map, for each key (i.e.
ATGC Count) its neighbors are traversed. While lraversing
2 neighbor, for each member (1 < i < P) in home key all
members (1 <j<gq) in neighbor key is compared,
vhere poand g are number of members in home and
neighbor key respectively. If d, (4, p;) 1s no more than 2d,
Hen py stores gy as its current neighbor member (Definition
) oand py o ostores p; as its previous neighbor member
Definition 7).

The algorithm is optimized by defining neighbors as those
calues which are greater than home key. This optimization
corks because the ATGC Counter map is sorted in
sseending order of key value. Therefore, a neighbor key in
-utrent operation will be home key in any of the next
peration. So, when a neighbor with greater value is
raversed, member of the home key is stored as the previous

neighbor member of the neighbor key where conditions are
fulfilled. So, home key doesn't need to traverse smaller
neighbors as smaller neighbors members are already stored
in previous neighbor member of the home key.

To create neighbor N(C,d) like the example provided in
definition 3, it needs to reduce (or subtract) amount d from
position i of the home key, where 2 < i < 4 in all possible
way and then distribute (or add) d in position(s) j of home
key,where 1 < j < 4andj # i, inall possible way.

To traverse neighbors, a new recursive algorithm 1s
proposed. Pseudocode of the NeighborTraverse algorithm is
provided in the Algorithm 2. In procedure
NeighborTraverse home key €y and ATGC Counter Map M
is provided as parameter.

Algorithm 2 Traversing neighbor key of the home key
I: procedure NeighborTraverse(C,., M)
2: z=C,
d for all possible Reduction of amount from position
fofzwhere 2 < i < 4do

4 for all possible Distribution of amount at
position j of z, where 1 < j < 4 and J# i do

5t Compute a new ATGC Count G,

6: it (, = C, and Cy is a key in M then
CompareMembers(C,, £y)

o end if

8: end for

9: end for

10: end procedure
I1: procedure (‘ompareMembers(Cx, Gy)

12: for all members w;e €, do

137 for all members uje C, do

14: it (dy(uip;) < 2d) then

15: #;.Cureent Neighbor Member - U,
16: pj.Previous Neighbor Member = U,
17: end if

18: end for

19: end for

20: end procedure

For example, to traverse the neighborof 1.1.2.1 with d = 1,
all possible reduction from position [,2 < i < 4 would be
t1.1.2.0, 1.1.1.1. 1.0.2.1}. Now for each possible reduction
there are different possible distributions. For 11.1.2.04, 3
possible distributions, preserving the condition mentioned mn
line 4, are {1.1.3.0, 1.2.2.0, 2.1.2.0}. Similarly, [1.2.1.1.
21.1.1, 1.1.1.2} and {2.02.1, 1.03.1, 1.0.2.2} are the
possible distribution of {1.1.1.1} and {1.0.2.1} respectively,
preserving the conditions.

So, for the home key {1.1.2.1}, 9 neighbor keys {1.1.3.0,
1220, 2.1.20 1.2.1.1, 2.1.1.1, 1.1.12, 2.02.1, 11031,
1.0.3.2} are obtained. According to the condition in line 6. 3
neighbors {1.1.1.2, 1.0.3.1, 1.0.2.2) which are less than
home key are pruned. And finally there remain 6 neighbors
151300, 1.2.2:0,2.1.2.0, L2.1.3, 2.1.1.1, 202 .

From ATGC Counter Map created in Fig. 1, the neighbor
keys of 1.1.2.1 are found which is shown in Fig. 2(a). Here
11.2.2.0, 2.1.2.0} are not included because they are not key
in ATGC Counter Map illustrated in Fig. 1. In Fig. 2(b) the
current neighbor members of the member "AGTGC' 1s
shown which is stored during the traversal of neighbor keys
in Fig. 2(a).

1.1.2.1 _T .
B AGTGC :
ATTGC
sty AGTTL
1130 AGAGC
1311 AGTAC
2021 |
‘ 2.11.1 ,
‘
| I . — J
by

Fig. 2: (a) shows the neighbor keys of 1.1.2.1 and (b) shows the
current neighbor members of 'AGTGC' which is stored by
traversing neighbor keys in (a)

2.2.4 Graph Creation and Clique Finding

Luring the traversal of neighbor key, each member y of the
home key stores its current neighbor member such that for
each [-mer in current neighbor member x;, dy(x;, 1) < 2d,
where 1 <! < r and 7 is the size of the current neighbor
member. Each member u also has previous neighbor
member which is stored during the traversal process of any
previous home key smaller than current home key. For each
[-mer in previous neighbor member y;, dy(y;, 1) < 2d,1 <
[< t, where t is the size of the previous neighbor.

For each member, a member group (definition 9) is formed
by fulfilling current neighbor and previous neighbor. In
figure 2(b), member group of AGTGC is its current
neighbor members because it has no previous neighbor
member.

For each member group a graph using WINNOWER [11]
algorithm is created. According to WINNOWER each [-mer
i the member group is a vertex. An edge connects two
vertices if the corresponding [-mers have no more than 2d
mismatches and they are from different sequence,

For example, a graph from the member group depicted in
Fig. 2(b) 1s created. The member group is redefined as in
Fig. 3(a). 1f it is assumed, for the sake of simplicity, that in
Fig. 3(a) no two [-mers in member group are from same
sequence and 2d = 1, a graph illustrated in Fig. 3(b) can be

constructed. Here. a number inside each node represents

corresponding [-mer of the member group of AGIGL
shown in Fig. 3(a). There is an edge between two nodes if
and only if hamming distance between two nodes 1s not
more than 1.

Improvements done by MITRA [6] algorithm 1s also
incorporated in ACM algorithm. MITRA made
improvement by removing spurious edges from the graph
At each node of the tree, it removes edges by computing the
degree of each vertex. If the degree of the vertex is less than
n, it can remove all edges that lead to the vertex since it 1s
not part of a clique. It repeats this procedure until it cannot
remove any more edges. If the number of edges remaining 1s
less than the minimum number of edges in the clique, the
existence of a clique is ruled out.

If number of edges remaining is greater than or equal to n
clique finding algorithm is applied as proposed in [9].
Applying clique finding algorithm in Fig. 3(b). the clique in
Fig. 3(c) is obtained. By definition of clique, this is the
maximal complete subgraph of graph in Fig. 3(b).

(1) AGTGC (' o

(2) ATTGC N p
(3) AGTTC g

(4) AGAGC i
(5) AGTAC X

Fig. 3: (a) shows the member groups of AGTGC. (b) shows the
graph created from (a). (¢) shows the clique found from graph in (b);

If a clique of size greater than or equals to n is found, a
profile matrix for the nodes of the clique is created. From
profile matrix, a consensus string ¢ is formed. If for all
nodes (i.e. [-mer) of clique x;, hamming distance between a
node and consensus string dy(x;,0) <d, then this
consensus string @ 1s the desired motif M.

For example, from the clique in Fig. 3(c). a profile matrix
and consensus string as in Fig. 4 is created assuming n = 3
and d = 1. For all nodes of clique, hamming distance
between a node and consensus string is no more than d
(where d = 1). Therefore this consensus string is the motif.

ACM: An Efficient Exact Algorithm for Finding Planted Motif in Biological Sequences.

% Gy 1% i

{ Thpue LT S

L g § AR

Ho% o o by

Frofile | S R T

Wty i 44 i oo

0 oDo oG 3

R T O T
Nirireg

Fig. 4: From clique nodes, profile matrix is created. From profile
matrix, consensus string is created.

3. Results and Discussion

In this section performance of ACM algorithm is compared
with three other well-known exact algorithms - PMS2 [13],
MITRA Graph [6], MITRA Count [6]. Algorithms for motif
search typically tested on random input data sets. Any such
data set will consist of 20 random strings each of length 600
(n =20,m = 600). A random motif of length [1s planted
at a random position in each of the strings. mutating it in
exactly d positions. The algorithms are tested for varying {
and d values. In particular, the following instances: (11.2).
(12,3), (13.3), (154), (17.4), (19,5), (21,5) and (28.8) are
employed.

Table 1: Run time in seconds of MITRA Count, MITRA Graph and ACM algorithms on different instances all in a Pentium

III, 750 MHz and 1GB RAM machine

MITRA Count [6] MITRA Graph [6] ACM
PII, 750MHz, 1GB RAM PII. 750MHz, |GB RAM PILL, 750MHz. 1GB RAM
(11,2) 60 60 52
(12.3) 60 240 1223 ‘
(13.3) 120 120 199 |
(15.4) 300 300 615 o
(174) . . 155
(19.5) - - 512
(21,5) - - 44
(28.8) - 240 134

Table 2: Run time in seconds of PMS2 and ACM algorithms on different instances in a Pentium 4, 2.4 GHz and 1GB RAM
machine and also ACM in a Intel Core i5, 2.5 GHz and 4GB RAM machine

PMS2 [13] ACM ACM
(P4.2.4GHz, 1GB RAM) (P4, 2.4GHz, 1GB RAM (Coreis,2.5GHz 4GB RAM)
(11.2) 0.78 45 12
(12.3) 15.5 860 250
(13.3) 20.98 - 154 42
(15.4) 217 413 126
(17.4) 216 110 33
(19.5) - 398 109
(21.5) 2 30 8
(28.8) . 128 38

The ACM algorithm 1s run on two machines with different
specifications to compare algorithms. To compare with
PSM2 [13] which run on a 2.4 GHz Intel Pentium 4
processor having 1GB RAM, the ACM is run on a machine
with 2.4 GHz Intel Pentium 4 processor having 1GB RAM.
To compare with MITRA-Graph [6] and MITRA-Count [6]
which run on a machine with 750 MHz Intel Pentium III

processor having 1GB RAM, the ACM 1s run on a machine
with 750 MHz Intel Pentium III processor having 1GB
RAM. And hence the running time, taken from the
respective papers, 1s comparable as they are run on machine
with same specifications.

Table 1 and 2 shows the performance of the algorithms on
challenging instances. In the tables as mentioned in [4]. the

60
letler "= means that corresponding algorithm cannot solve
the challenging instance in the experimental settings.

The algorithms are compared in terms of run-time and
instance solving. For run time. as shown in Table 1 and
Table 2 for [< 15 MITRA-Graph [6], MITRA-Count [6)
and PSM2 |13] performs better than the ACM. But as the
length 1 increases (i.e. for [> 15) ACM outperforms all
these algorithms by almost a factor of 2. This is because, as
the value of ! increases. number of edges in graph created
on member eroups decreases. Therefore clique finding
algortthm can perform faster,

For instance solving. again from Table 1 and Table 2 it is
seen that ACM can solve instances in case of d = 5 where
PSM2 [13] fail to solve these instances. And for ACM with
larger o if the ratio of mismaitches is lower ((19,5) and
(21.5)) then it took less time. 'This is because as the

mismatehes increase the neighbor finding procedure of

ACM algorithm performs steadily while PSM2 fail to
handle this situation. In case of (18.6) where the allowed
mismatelies are oo high (66.66%), lor a single [-mer,
pumber of possible neighbor [-mer increases exponentially.
As the both the wvertices and
corresponding edges increase exponentially in a neighbor
group. Consequently, clique finding algorithm fails and
consequently ACM also fails in this situation.

neighbor increascs,

4. Conclusion

i this paper a new algorithm named ACM is proposed.
ACM aleorithm uses a new data structure named ATGC
counter map which efficiently reduces the search space for
neighbor of an l-mer. We also developed a novel algorithm
named Neighborlraverse to traverse the neighbor of an (-
mer on ATGC Counter Map, The proposed ACM algorithm
outperlorms existing algorithm in terms of run-time for
larger instances (d = 15). It also solves instances where
mumber of musmatches d = 5 which previous algorithm
PMS2 failed to solve. Performance and accuracy are main
biological sequence analysis and average
performance ol the proposed algorithm is much better than
existing ones. luture scope will be to allow msertion and
deletion in the motil

ISSUCS 1IN

References

I L. Baley and C. Elkan. Fitting a mixture model by
cxpectation maximization to discover motifs in biopolymers.
Proceedings of the Second International Conference on
Intelhigent Systems for Molecular Biology, 2:28-36.

6.

10.

5. M. Igbal Morshed and Saifuddin Md. Tareeq

1. Buhler and M. Tompa. Finding motifs using random
projections. Journal of computational biology, 9(2):225-242,
Jan. 2002

I Davila, 8. Balla, and S. Rajasckaran. Pampa: An improved
branch and bound algorithm for planted (1, d) motif search.
Technical report, 2007.

H. Dinh, S. Rajasekaran, and J. Davila. qPMS7: a fast
algorithm for finding (I, d)-motifs in DNA and protein
sequences. PloS one, 7(7):e41425, Jan. 2012.

H. Dinh, S. Rajasekaran, and V. K. Kundeti. PMS5: an
effcient exact algorithm for the (I, d)-motif finding problem.
BMC bioinformatics, 12(1):410, Jan. 2011,

E. Eskin and P. A, Pevzner. Finding composite regulatory
patterns in DNA sequences. Bioinformatics, 18(1):354-363,
2002.

G. Z. Hertz and G. D. Stormo. Identifcation of consensus
patterns in unaligned DNA and protein sequences: a large-
deviation statistical basis for penalizing gaps. Proceedings of
the Third International Conference on Bioinformatics and
Genome Rescarch, pages 201-216. 1995,

L. Keich and P. AL Pevzner. Finding motifs in the twilight
zone. Bioinformatics, 18(10):1374-1381. Oct. 2002,

J. Kone and DL Juneszic. An improved branch and bound
algorithm for the maximum clique problem. MATCH
Communications in Mathematical and in Computer
Chemistry, 58:369-590, 2007.

C. E. Lawrence, S. F. Altschul, M. S. Boguski, I, S. Liu, a. I,
Neuwald, and J. C. Woolton. Detecting subtle sequence
signals: a Gibbs sampling strategy for multiple alignment.
Science (New York. N.Y.). 262(5131):208-214. Oct. 1993,

P A. Pevener and S-H. Sze. Combinatorial approaches to
finding subtle signals in DNA sequences. Proceedings of the
8th International Conference on Intelligent Systems for
Molecular Biology. AAAI Press, San Diego, pages 269-278,
2000,

A. Price, S. Ramabhadran. and P. A. Pevzner Finding subtle
motifs by branching from sample strings. Biointormatics.
19(Suppl 2):11149-11155. Oct. 2003.

S. Rajasekaran, S. Balla, and C.-H. Huang. Exact algorithms
for planted motif problems. Journal of computational biology,
12(8):1117-28, Oct. 2005,

