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Abstract

Molifs are patterns found in biological sequenc€s that are signi{icant for understanding g€ne function, human
disease, drug design, etc. Finding motif is one of the most important and challenging tasks in bioin{ormatics. In this
paper a rew algorithm named ATGC Count€r Nlap (ACM) is propos€d to solve motif finding probl€m. The proposed
rlgorithm llrovides several fealures. First, a new dala structure named ATGC Counter Map is proposed to reduce
the search space. S€cond, as an exact algorithm it guarantees to find motif from input sequences, And third,
experimenlal results sho$ that the algorithm outpcrforrns three of the well-known €xact algorithms by (i) solving
challengiDg instances that thes€ existing algorithms failed to solve and by (ii) reducing run time for larg€r motif
sequences.

Kevrvords: ATGC counter Map, Planted Motif Search,
Cliquc Finding. Profile Matrix, Consensus Motil

l.Introduction

Nlany significant biological problenx have been soh,ed by
ciiscolery oi patler-ns in DNA and proteln sequences. Ilor
tnstancc. rclcntification of pattems in nucleic acid sequences
has helped in detcrmining open reading frarnes, identitying
ptomoter clements of genes, identifying intron/exon splicing
sitcs, locating RNA degradation signals etc. In case of
plotcilr sequeDce. pattem identification helped in domain
idcntification, protease cleavage site location, signal peptide
iclcntification, protein degradation element identification,
sho( lirnctional n-rotif discovely etc. Motlfs are pattetns
ibLrlld in biological sequences which are important fol
rrnclcrstanding maly biological subjects like gene function.
hunran disease, dlug design etc. As a result, motif
i.r'ntilication plays a srgniticant lolc in biological studies.
'l-he motif search problem has attracted many researchers
o\cr lasl two decades. ln literahue, many versions of the
n]olil firding problem have been enumerated. Examples
includc Simplc Motif Search (SMS), Planted Motif Search
(l'MS)-also knorvn as (1, d) motif search. and Edit-distance-
bascd Motif ScaLcir (EMS). In lhis paper, locus will be on
the lrNlS ploblcm. l)'
l'MS is staled as fbllows. Given n sequences and two
rntegers, ll.rotif length I and mjsmatches (substitutions)
allorved d as input. For simplicity, it is assumed that the
length of each sequence is m. The problem is to identify all
strings M of length I such that M occurs in each of the n
s,quences with at most d mismatches. Formally, string M
has to satisfy the follo*,ing constraint: there exists a string
!1, of lenglh I in sequence I, for every (1 si i ( n), such
lhat the Dunbcr of mismatcltes between M and Mi is less

than or eqrral to d. String M is called a rrolrf. For example,
ri thc rDput sequences are GCGCGAT, CAGGTGA and
CGAIGCC: I :3 and d : 1. then GA1 and GTG are some

'rf the (3,1) motifs.

PMS is a well-studied problem and it has been shown to be
NP-hard. As a result, all known exact algorithms for PMS
takc exponential time in some of the parameters in the worst
case. Two kinds of algorithms have been proposed in the
literature for PMS: exact and approximate. While an exact
algoritlrm always finds the correct motif, an approximate
algorithm may not always find the corect motif. Tlpically,
approximate algorithms tend to be faster than exact
algorithms. Some approxinate algorithms are due to Bailey
and Elkan [1], Buhler and Tompa [2], Lawrence et. al. ll0l,
Pevzner and Sze I t]. These algorithms are based on local
search tecbniques such as Gibbs sampling and expectation
maximization. Some other approximate algodthns are:
PROJECTION l2), MULTIPROFILER [8], Patrem
Branching [12], CONSENSUS [7]. {libbsDNA [1itl.
MEME [ 1], and ProfileBranching [2].
Although approximate algo thms are acceptable in some
cases in practice, exact algorithms are preferable since they
are guaranteed to report co[ect (1, d) motifs. For biologists,
correct motifs found by an algodthm could be much more
important than its run time. Considering this, in this paper,
focus is given on efficient exact algorithms. Some exact
algorithms are due to Dinh et. al. l4l[5], Davila er ttl [3).
Rajasekaran et. al. ll3l, Eskin and Pevzner [61. Some
efficicnt exact algorithms are MITRA-count l6l. MITRA-
graph L6l and PMS2 [13].

In this paper a new motif finding algorithm called ACM is
proposed. This new algodthm has the following
contributions. Fi$t, it presents a new data structur€, named
ATGC Counter Map to reduce the search space which
essentially reduces the run time of the algorithm. Second,
the proposed algoritbm is an exact algodthm. Therefore it
guarantees to detect correct motif from the sequence. Third,
performance of the proposed aigorithm is compared with
three existing exact algorithms. The proposed algorithnr
outperforn.N these exact algodthms in terms of run time and
instance solving. In the following sections the details of the
proposed algorithm rs drscussed.



2. Proposed Methods of Motif I'inding

2.1 Notations and definitions

ln this section some notatiolls and dcfinitions are introduced
that will Ilelp to describe the proposed algorithnt clearly.

Delinition 1. A string x - xlll .... xll of length I is cailed
an I ner'. Set ofall I mers ftom input sequence is denoted as

.9.

Definition 2, Given two stnngs x and y of eqlLal length, the

Htnnntttg tlistance bctween x and y, denotcd by dn (r, y) is

the Dumber of mismatchcs between them.

DetiDition 3, A shing C, ts called ATGC counl ol ai l-met
x if C, is of the lbrm (number of A in x> . {number of T
in x> . <mrmber of G in x>. <number of C in x>. For
cxample, ATGC cou[t of l-mer AATCCG is 2.1.1.2 . lu
gene|al any A'I'GC coult is denoted by C *'hcreas for a

spccific l-mcr r: ATGC count is denoted by C,.

I)elinition 4. Gilen trvo ATGC Count C, and C/ u'here I is

samc. the Collrt rl.rlar(e befrveen C, and C", denotcd by
(1.(C,,Cy) is the total nun.rber of difference in nun.rber of
A,T.(l and C. For example. Let, C" : 1.3.2.1 a , Cu =
2.1.2.2,thendc(C,,Cy) = (1 +2+ 0+ 1) = 'r

Defini(ior 5. A set of ATGC C'ount C, is called Nciglbor'

ol un ATGC Couttt C, lf dc(C,,Cy) S 2d and C", is gleater

tl.an f.r. lt is denoted by N(C, d). For example neighbor of
I L1.2.1 1bl d=.1 are 11.1.3.0. 1.2.2.0,2.1.2.0. 1.2.1.1.
1. r.1 1. 1.2.2.1 ) .

l)elinition 6, AfGC Countcr Map data structurc is a map
data sllLrcture containing (ke1,,va1tt", pair where li?i, is

ATGCI count C. and value is list of l-mels which have same
number of A.T.G,C as C's internal '.' sepalated value
fcpl-cscnts.

Dclinition 7. Fol a key cach l-mer storcd in the r,alue is
called its lrclrDer. A member is denoted as 4. For e\anple,
mcmbcrs of C-1.1.2.1 can be pattems AI'GGC, GGCAT.
'IACG(i etc. rvhcrc all pattems havc same number of
A. f.G.C as C represents. A member contains t$'o lists. First
otc is CLut'ent Neighbor, which contains a1l l-mers r such

that dd(p, n) ! 2d ard C, 2 C, whele x € .t. Second one

is Prct,iotLs Neighbot, which contains all I mers x such that
,ln1r,r) 3 2d anJ C, < Ca where x € .t

Dclinition 8. Fol a key=C. tbe Neighhor ol tlte key are a|l
the l<ev \hich contains the value from N(C,k), where
k =. 1 to 2t1. For all neighbor kcy, C is defincd as hot1rc ke\'.

Detiniiitrrr 9. For cach member i-r. lvlenber group of 1.t

rlcnoterl b1'f contains all l-mers ,( such tl'lat dtr(y,x) 3 2d
arld x € 5. ,Vember group contains the member itsell
currcnt neighbol and previous neighbor ofthe men-rber.
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Definition 10. Given a set of n strings Si, ....,,5, of length
m each. a string M oflength I is called an (1, d)-motifofthe
strings if there are at least n strings sucll that the Hanming
distance between each one of them and M is no lDore than
d. M is called an (1, d)-motil

2.2 ATGC Counter Map Algorithnr

2.2.1 Oyervierv of thc Algorithm

ACM algorithm uses ATGC Counter Map to store each l-
mer. Then for each key in map it haverses the neighbor of
the key. To do this proposed Neighbor'fraverse algorithn.r is
usccl. By traversing all the neighbors, for each member in
key, tts membel group is storcd. Thcn a graph for caclr
membel group is created using MITRA 16l algolithm.
MfTRA f6l algorrthm nraJe sonrc rmprovcmcnt\ ol
V'/INNOWER [1 1] algorithm for creating such graph.
Finally, clique finding algorithm described in [9] is used to
Itnd clique of size n in the graph. If a clique of size greater
than or equals n is found, a profile nEtrix for the nodes o1'

thc clrque rs created. F|om profile marrix. a con5ensus suillg
o is formed. lf for all nodes of clique, hamming distance
between a node and consensus string dn(x1,o) S d, whcre
1 < i < n, then this consensus string o is oul desircd motii
Otherrvise. thcre is no motit'.

Here dre ACM algolithm is described iD thlee subsections.
In subsectior 2.2.2 A'IGC Counter Map data structule is

discussed. In subsection 2.2.3 Neighbor'[raverse algoritbr].]
is presented and how it is used to find the neighbor of a key
is clescribed. Also horv a member group of a member in the
key is stored is described in this section. And finall_v in
subsection 2.2.,1 how a graph is created fiom member groul')
and how clique finding algorithm is implemented on thc
graph to find the motif is discussed.

2.2.2 ATGC Counter Map data structure

ATG(' Counter Mup data structure uses the map data
structure to store each l-mer in 5. Map data stlucture stores
(ke1:, value) pair u'here each key is unique. In ACM
algorithm, ATGC coLull is used as key and comespondrng
list of l-mer (i.e. members) as value. ,,17G(' Counter lvlup is

created by the following CreateACM procedure as given in
algorithm L

Algorithm 1 Create ATGC Countel Map

1: procedure CreateACM(map \4)

2: for each l-mer e S do

l: compute lts ATGC count C.

4: iI C is already present in thc map as a kcy then

5: push I mer at the back ofthe member list.

6: else
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: iriscrl C in M as kc),

\: push the I ner as valuc ol kev C

9: crrd if
l0: end lbr
I lt cnd proccdurc

I ol e ran'rple. irrscrlion ol the I nrer.s lI.GAGG. ATTCC.
.\(J I'C(.. A(]AGC. ACI'AC. 'f1.ACC. CAGTG, AG,ITC}
ur ACM rvhere I -.5 is illustrated in l-ig. 1. As the ATCjC( ountcr'_Map is sot.tcd by key value, insedcd I ncrs appcar
rr soltcd ordcl of its ATGC (irunt value.
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nerghbol member ofthe ncighbor kcy *here concjitrons ale
lulfiilcd. So. hor-ue key doesn,t necd to n.arelsr- smaller
neighbols as sntaller neighbors membcls are alread\ slorcd
lll prc\ t,,lts rrcrelthor rncrnhcr ol llrc hotnc Lc\.
'Io create neiirhbor N(C,d) like the examplc p:ovrded in
definition 5, i1 needs to reduce (or subtract) amounr d tion
position i of thc home key, where 2 S i si 4 in ail possible
$'ay and then distlibute (or add) d in positron(s) I ol home
kcl.wlrcre I S I { 4 and i r i. inallpo5srble \\r)
To traveLse neigllbors, a new recursive alsonthnt is
propo.ed. Pserrdocode of the \eighhol lrrrer.e al!,,r rrlrnr rsprovided in the Algorithm 2_ In lrocctlure\er!hbor l.r'avrrse Irorrre ke; C. tnd n lC( ( ourrte r Vrp M
rs p|or tdcd as parrmeter.

Algorithm 2'fraversing neighbor key ofthe honte key1: procedure NeighborTravcrse(C,,M)
2. z=C..
3: lbr alipossible Reduction of amount fi.om position

rofz.rvhcre2<i<4do
1: lirr al1 possible l)istr.ibution ol amounl rl

positioDj of z. rvherc 1 ! 7 < 4 andl + I do
(-ompute a nerv A1'G(.(-ount d"
il C, > C. rnd f, r. .. krr rrr M rlrr..l

CompareMeurber.s( C,, Cr)
cnd if

Villue (^lelrtbe15)

Lttir' l
14r; l
I !lnl. l

c/\(i I ai

12t) 
]

1.).1.1 .J i,rcric: ]

l

A0 tA(
i

t) i

-5:

6:

l ig. l: AIGC Counrcr Map aftcr. insertion oj.the l_mers
] ].(;AG(;. A I'I'(IC. AGTGC. AGAGC. AGI'AC. TI'ACC.,\r,Jr, \,rllr'' wlrc-c /_5. IIri. ,llrlr i5 ,nrl.d b)
\ I (i(' ('ouDt Vahre

r onrlticritv ol inscrtion is santc as the complexitl. o1.
rir5!'rlins iuk) a nup *Iich is O(log K) whc,rc k is rhe sizc
.)l ll1c map rrhich is thc total nurnbcr ol A l.C(. Count value.

1.2.3 Ncighbor l ra!crsing Algorilhnl
\licl buildiDe up A'lGC C'ourtcr Map, for.cach key (i.e.
\ l(lC ('oun1) its neighbors are lraverscd. Whjic travelsino
. neirqhbor'. lor each ntcnrbcr 41(1 < t < p) in honrc key ali
: rrrlbcls p7(1 (7 r/) in ncighbo| kcy is conprr.erl.
,.)rcrc p and rJ are lunrbeL of membeLs in homc and
:. rglrbor kcy r.csircctively. Iltt,leti,p) is no nror e than 2r1.
' ,.n lr storcs l/ as its cuffent neighbol rnentber (DefinitioD
I and fi s1(xcs lr as its prcvious nei-qltbor mcmber

I)clirrition 7).

iir.' algolithnt is optimizcd by dcfining ncighbors as tirosc
. ,lLrcs rrhich arc grcater than honrc kcy. Tliis optimization.,rks bccausc ihc AfGC CorrDter map is sol.ted in
....n(iinc order of key valuc. Therelbre, a neighbor key in
-.il.r)t opcratiou $ill bc' ho|rc key in any of thc next'jirrarion. So. ultcn a treighbor wjth grcater \aluc is--,,elscd. ntemtrct ol the honlc key is stored as the prevtolrs

8: end for
9: end lbr

10: cnd procetlure
1 1: procedure CompareMembers(C,, Cr)
11, lbr all mcmbcrs Lr,t C, do
I { lbr rll nrcmber, pi;r C, do
l l r rd,,(p, p,) S 2dr tlterr

li, p,.Cureent Neighbor Member 1r,

19, ili.pr.evious Neighbor \{cmbcr = g,
11. cnd if
16: cnd lbr
19: eld for
20: end proccdDre

For exantplc. to tra\.ersc the neighbor ofl.l 2 I riith d = 1.
all possiblc r.cducrjon l'r.om posirion i,2 S r _< 4 would bc
il.l.l.0. 1.1.1.1. l0J tl. \ou lor cach possiblc reducriol
thcrc a|e dif-terenr possiblc disrriburjons. For 11.1.2.0;. :pnqsrl lc dt.lllhlltton\. pre<crt )! llle Condrlln merrtrOncd injrnc J are :l.t j 0 L2.2.0. 2.1.2.0;. Srmrl.rrll. ;1.2 Ll.
2.1.1 1.. 1.1.1,2) and 12.0.2.t, 1.0.1.1, 1.0.2.ij aLe the
possible disrriburion of I1 l.1.1] and {1.0.2.1} respectively,
presen ing the conditions.

l.-.j"^.,1. l"l. key {1.1.2.1},9 neighbor keys {1.1.3.0,t.22.0^. 21.20 1.2.1.1, 2.1.1.1, 1.1.1.2, 2.0.2.1, 1.0.3.1.
i.0.3.2l are obtained. According to the condition in Iinc 6,1
reighbors 11.1.1.2, 1.0.3.1, 1.0.2.21 which are less rhan

f:T",1.t. T"_ O-".d. And fina y thcre rcmarn 6 ncrghhols
it.lt0. t.2.2.0.2.1.2.0. 1.2.t.1.2.I L l. 2.0.2.I i.
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Flon AIGC Clounter Map created in !-ig' 1. the neighbor

keys oi 1.1.2.1 are ibund wiich is sbown m Fig.2(1) Here

i:lz.2.0. 2.1.2.0\ are not included because they are rloi key

in ATGCI Counter Map illusttated in Fig. 1 h Fig. 2(b) the

current neighbot menrbers of the nember 'AG]'CC' is

shou,n which is stored durit'tg the traversal of neiShbor kcys

in Fis. 2(a).

1l:l(l
1 2.1 1

)t)17

,. \
I !--- 15I

(b)

,rr, i--

lig.2: (a) shows thc nelghbor kcys ol l.1.2.I and (b) shows thc

cunenl ncighbor nrembers of 'ACTGC' whrch is storcd by

traversing neighbor keys in (a)

2.2.4 Graph Creation and Clique Finding

Luring the lr'aversal of neighbor key, eacb member p of the

home key stores its current neighbor member such that for
each I mer in culrent neighbol member x1, duGt,l) ! 2d.
u'hcre 1 3 i ( r and r is the size of the current leighbor
nrember. Each member 4 also has previotts neighbor

nenbel rvhich ts stored during the travetsal ptocess of any

previous hone key snallet tltan cunellt home key. Iiol eaclt

l-nrcr in previous neighbor member y t, dr(yi, tt) < 2d'1 <
I ( t, whele t is the size ofthe previons neighbor.

I;or each membeL, a membcr group (definition 9) is tbrmed

b1. inlfilling current ncighbor and previor.ts neighbor' In

ligurc 2(b). men'tbct group of AGTGC is its cLulent

nerghbol mcmbets because it has no plevious neighbor

nlerl'rber.

I'ol cach men.tbcr gt or.rp a graph using WINNOWIIR f 11l

algorithm is created. According to WINNOWER each l-mer

lli thc me|Dber glcrtip is a vertex. An edge connects two

\.nices i1 1hc correspondtng I mers have no more than 2d

mrsnratchcs and lhey ale lroln ditferent scquence

I t,r cranrple, a graph fronr the membet group depicted in

Fig. ?(b) rs creatccl. "fhe member group is redefined as in

Fig. 3(a). ll il is assumed, tbr the sake of simplicity. that in

Fig. 3(a) no t\ro I lners in membel gloup are from same

seqrLcnce and 2d - 1. a graph illusttatcd in Fig.3(b) can be

.onstructr-d. llere. a number it-tside cach node represenls
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co[esponding l-mer of the member group oi AGIC-
shou,n in Fig.3(a). There is an edge betu'een t\\'o node: i:

and only if hamming distance between two nodes ts rl:
more than 1 .

Improvements done by MITRA 16l algorithm is al'.
rncorporated in ACM algorithm. MITRA nude

improvement by removing spurious edges from the graph

At each node of the tree, it removes edges by computing th.-

degree of each vertex. If the degree of the vertex is less than

n. it can remove all edges that lead to the vertex since lt is

not part ofa clique. It repeats this procedure until it cannol

lemove any more edges. Ifthe numbel ofedges rcmaining rs

less than the mintn'tum number of edges in the clique' the

existence ofa clique is ruled out.

lf numbel of edges remaining is greater than or equal to n
clique finding algorithm is applied as proposed in [9]
Applying clique finding algorithm in Fig.3(b), thc cliqtte tn
Fig. 3(c) is obtaincd. By de|nition of clique. this is thc

maximal complete subgraph ofgraph in Fig 3(b).

a
rz ) (o )\ ./ l-,2'./

i1)'. -{

f' ")

/\
ir I - 1r .r

G]

Fig. 3: (d) shows thc member groups of ACTCC. (b) shows lhe

graph creatcd from (a). (c) shows lhe cliqLre found liom graph in (b)l

lf a clique of size greater than or equals to n is found, a

profile matrix fbr the nodes of the clique is created. From
profile matrix, a consensus string d is formed. If for all

nodes (i.e. l-mer) of clique 11, hamming drstance betwcen a

node and consensus string ds(x,,o) <d. ther this
consensus string o is the desired motif M.

For exan'rple, fiom the clique h Fig. 3(c). a prolilc matlix
and consensus strjng as in l'ig,4 is created assuming n = 3

and d = 1. For all nodes of clique. hamming clistance

between a node and co[sensus string is no mole thall d

(where d = 1). Thetefolc this consensus string is the motif.

tJ)
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Iiig.4r Frcm cliquc nodcs. profilc nranix is crc:rlcd Frorrr proflle
n1tlri\. consensus strlnq is crcatcd.

3. Results and Discussion

In this scctio0 peribrmance of ,A.CM algorithm is conparccl
witb tlxee odrer rvell-known exact algorithms - P\4S2 []31.
MI ITL{ Graph f6l, MII'RA Count 16l. .A.lgorithns ibr motif
sea|ch typically tested on random input data sets. Any srLch

data set will consist of 20 random strrrgs each of length 600
(.n : 20,m - 600). A ranclom motif of length I is planlcd
at r rJ Llonr posrtroll in each of thc \lIrr]!.. rnrllr'rrr:' l tI
exactly d positions. '[he a]gorithnls arc tested li)r \ ar'\,ilg I

ard d values. ln particular. the tbllorving instaDces: (11.2).

(12.i). (11.1). (15,4). (17..1), (19,s), (21.5) and (2E.lJ) arc

employcd.

'I !'
{ Ihltt. ,! ,.,

... :r,.
.t " l,

{tral"ltr I ,; rr
Lh)t"l\ {,;'. i

t' 11 rl
f-irrt\rrrrrn\ ,\. a.,

.l?nJJ.ji'

t.

i1

r., {

'I'able l: ILun tine ir seconds of MITR,^ Count, MITRA Graph and ACM algorithms on different ilstances all in a Pentium
IIl. 750 MItz and 1GB I{AM machine

MITRA Count [6]
PIll,750MHz, IGB RAM

Mll'RA Graph [6]
Plll.750MHz, IGB RAM

ACM
PIII,750Mllz. ICU RAN4

(1r.2) 60 rn) 52

(12.1) 60 240 l2?t

(lr l) l2(l 120 r99

( 15.4) 100 I00 615

(17,4) t55

(r9.5) 512

(21.5) .1.1

(lS,E) 240 B4

'fable 2: Run time in seconds of PMS2 and AC'M algorithms on dif'felent instances in a Pentium 4. 2.4 (illz and l GB ILAM
machine and also ACM in a Intel Core i5.2.5 GHz and 4GB RAM machure

PMS2 u3l
(P4.2.4GH2., I GB RAM)

ACM
(l'4,2.4GL12, 1GB RAM

ACM
(Corei5,2.5GHz,4GB RAM)

( r i.2) 0.78 ,15 12

(12,3) 1 5.5 860 250

( ll. i) 20 98 15,1 42

(r 5.1) ) t"l ,1 ll 1)6

( 17.4) 216 110 lt
(19,5) i98 109

/ ) I 5i i0 E

(2 8.8 ) l2R 38

Ihe ACM algorithn is run on two nachines rvith diilerent
specillcatioDs to compare algorithnrs. To compare with
PSN'I2 llll which run on a 2.4 GHz Intel Pentium 4

ploccssor havilg lGB RAM, the ACM is run on a rnachjrle
\\.itb 2.4 CIIz Intcl Pcntium .l processor having l GB Ia.AM.
'l o conrpalc with Ml'l'll-A-Graph 16l and MIl IL{-C ount l6l
t'hich lrrn on a machine \',ith 750 MHz Intel Pentiurn lll

processor having I GB RAM, the ACNI is ruD on a machinc
with 750 MHz Intel Pentium III processor having lGI)
[lA\,t. And hcnce the running time. taken fiom thc
respective papers. is con-rparable as they are run on lnachiuc
$'ith same specifi cations.

Table I and 2 shorvs the perfomtance of the algorithms on
challenging instanccs. In the tables as mentioned in l4l. the
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lcllcl ' nrccns 1l)al c('lcspouding algorilhnt cannol solrc
the challcDrting illslilncc it1 the c\per intclltal sctt,t'lgs.

lhc rlgoljtlrnrs rre conpalc(l in telnts <t1- r'un-linte aDd
inslancc solvinq. lror luu tit-lt('. as sho\\/n in Iablc I arrd
i ablc 2 1br' 1 < 75 \llllaA (iraph [6]. Ml lltA-Corrnr f6l
rnd l'S\12 | 1-i I pcrl'olnrs bcflcr tlrar) thc A('M. Bul as the
lcrltlh l Lnclcases (i.c. fbr I > 75) A(lM outperforns a)l
thcsc rlgorithnrs by alnrost a filcbr ol 2. Thts is bcctuse. as

th. rlluc of I incrcascs. nutuber o1-cclgcs in graph crcatecl
otr rrrcr'uber llotrps dcctcascs. lherelblc cliqtLe iinding
iLl!ror lLhrr can per lir nr tastcr'.

I ot inslancc srrl',.inl again lionr llblc I ard lablc 2 it is
sccr thill A( X4 cau sollc illstaltccs itr case ol d 2 5 $,hcre
PS\42 

L 1-f I fail to solvc thcsc instancrs. Arrd lor A( N,l n,ith
largcl d il tire rutio ol misuratchcs is lou'er ((19.5) and
(2l--t)) thcrr i1 took less time. lhis is bccanse as thc
niisrralcltcs increasc thc nciehbot tiudiug ltroccdurc of
'\( V rll:orrlhm pcrlorms stca(lily \\hifu PS\ll lail 1o

hlrrrlI L]tis siluation lu clrsL: ol-(1S.6) \,ltcrc llre allo\\,ed
nrsDrrlclrcs arc too higlt (.66.66'N,). Iirr a singlc 1 llrcr.
rrLtrrrbcr ol possiblc ucLqhltor l-tncr i ctclscs cxponcuttallv.
,\s lhc ncighbor ittcreascs. bolh tlt. \,rrticcs and
co1.lcsfondinq eclges inclease exporentially ur a llei-i]llbor
troup. ( onscquclttly. clicluc fincling llgot-ithrr f';uls and
collseclucntly r\('M also i'ails in tiris situatioD.

J. ( orrclusion

ln this papcl n ncrv algolithm narned A('Nl is ploposed.
\( \l irlgotitlilD Lt!cs a llL-\\, data strLlcturc Dantcd AIG(l

.oLLDLff 1llilp rrhrelt cllicrcntiy reduccs thc si]itrch spacc lor
rcrghbof ol rr l-uter'. \\c tlso developcd a norei altoritlrm
narrcrl \r:irllrbot lrr\ersr- to ttavcrse lhe neighhor ol an l-
rr.r or .:\ I (i( ('ollntcr Mnp. l he ploposed r\( M all:or ilhnt
oulpcrlbrnrs c\istnrg algorithm in lelnts ol lun tlure lbl
llrtcr inslanccs (.d> 15). lt also soh'cs instanccs whcrc
numbcr ol- nlsllatches d 2 5 s'hich prcvious lltorithnl
i)\lSl lurlcd to solvc. l)crlbrrl]ancc ancl accutacv atc ntain
i:srrcs rl biolo{ical scqucllcc altalysis rud avcragc
1trlli)fir)aucc ol thc proposccl algorithDt ls ntuch belter th!n
rrisliul ones. l;Lllluc scopc Nlll be to lrllorv inser'tion ancl
Jclt'tion ur thc rtrotiI
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