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Abstract

Dynamic programming algorithm for RNA secondary structure prediction including pseudoknot is efficient but
expensive. On the other hand heuristic algorithm provide a good alternative for effective solution. We present SKnot, a
heuristic algorithm for RNA secondary structure prediction including pseudoknot. Main idea of the algorithm is to find
the promising candidate stems which can generate minimum free energy structure including pseudoknot. The
algorithm is evaluated on 44 RNA sequences of various types. Experimental result suggest that SKnot predict
secondary structure better in most cases in terms of sensitivity and specilicity compared to other well known
algorithms like PKnotRG, NUPACK and DotKnot.

Keywords: RNA Pseudoknots, Heuristic Algorithm, 2. Background and Retated Work
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1. Introduction

RNA carries genetic information for a cell which will
express for protein generation. The key factor of RNA is it's
3D structure. This 3D structure can be represented as 2D
secondary structure which contains the collection of
hydrogen bonds between the base pairs. Figure I represents
the structure of Hepatitis Delta Virus (HDV) ribozyme []
sequence. Secondary structure contains stem and loop which
has a recursive relation between them. Figure I shows stem-
base by line. Pseudoknots are formed between unpaired base

in locps and the crossed arcs represent the pseudoknots.

Pseudoknots also plays important role in protein function.
For example, in ribosomal frame-shifting [2] and regulation
oftranslation and splicing [3].

We proposed a new algorithm to generate RNA secondary

structure including pseudoknot. Experimental results

suggest that our algorithm provide better result in terms of
speed, sensitivity and specifrcity than most of the available

algorithms including Dotknot. Time complexity of our
algorithm is O(K2) and space complexity is O(2*K) where

K is number of filtered stem. Overall time complexity of
RNA secondary structure prediction is O(K2*N3; where N is
the RNA sequence length.
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Fig. l: Hepatitis Delta Virus (HDV) ribozyme structure

Several researchers proposed dynamic programming
algorithms that find the minimum free energy structure from
a restricted class that includes certain pseudoknotted
structures 14, 5, 6, 7]. Rivas and Eddy has proposed
complete recursive algorithm to predict secondary structure.
Their algorithm calculate all possible secondary structure to
choose best structure including pseudoknots. RivaS and
Eddy provides complete model with parameters to calculate
the free energy of the structure. However runtime
complexity of O(n6) makes it difficult to run this algorithm
for sequence with more than 150 nucleotides (nt). Another
limitation of this algorithm is that free energy estimates of
pseudoknotted structures component used in the algorithm
are not optimized. As a consequence, the minimum free
energy prediction is often not correct [8]. The pknotsRG-
MFE [9] is another dynamic programming algorithm
proposed by Reeder and Giegerich with "canonization
rules". They proposed three rules for structure generation
that helps to reduce the runtime in O(n). Their algorithm
also provides suboptimal structures [9] and base-pairing
probabilities [7].

In contrast heuristic approaches provide no guarantees to
find the minimal energy structure but we can calculate RNA
secondary structure for larger sequence and they are less
restricted than the dyrrarnic prograrnming algorithms.
Heuristic algorithms are not limited to sampling from a

restricted sub-class, a feature that becomes more important
for longer sequence. In last few years, there have been
significant advances in the development of heuristic
algorithms, leading to improvements in solving RNA
secondary structure prediction problems tl0] A
disadvantage of this type of approach is that it is not
possible to remove or add stems later. Van Batenburg et al.

[l] showed that genetic algorithm approach could be
promising to predict the pseudoknotted structures by
addressing the shortcomings of heuristics algorithm. He
described results on a cornputer simulation of RNA folding
pathways using a genetic algorithm for structure prediction
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tl2l. Another effective algorithm called STAR ll2l,
maintains a list of stems that can be added to a partially

formed structure with probability that depends on the free

elrergy of the stem as well as on the free energy of the loop'

Their algorithm also includes a mechanism to remove stems

and a crossover mechanism for producing new structures

from two structures. Their algorithm can correctly predict

base pairs ranged from 62oh to 87o/o. One drawback of
STAR algorithm is that it requires a user with knowledge to

take decision in several steps. Ruan et al. [13] presented a

heuristic algorithm for pseudoknots structure prediction

called iterative loop matchig (ILM). ILM [13] generates

pseudoknotted secondary structures from multiple
homologous sequences. A computer simulation of the

folding dynamics of an RNA molecule was proposed by
Isambert and Siggia [4]. Their method can provide the

identification of kinetically trapped states that may be on the

fvlding pathway of the RNA molecule'

3. Our Proposed Algorithm

We have proposed an algorithm as a solution to the RNA
secondary structure prediction named SKnot. Existing

algorithms are used for local alignment and frltering while a

stem selection algorithm is proposed. The pseudocode ofthe
algorithm is given in the SKnotted structure procedure and

detail solution is described in the following subsections.

1: procedure Sknotted structure
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2: Generate stems using Local Alignment Algorithm

3: Filter stems to reduce search space

4: Select best combination of stems:

5: generate secondary structue
6: calculate score for structure and choose MFE structure

7: endprocedure

3.1 Generating initial list and filtering

GUUGLE [5] is used as local alignment algorithm'

GUUGLE can generate exact match between the target

sequence and query sequence. GUUGLE returns a fragment

of sequence containing (ii,l) whete / denotes the length of
match, i denotes the starting position of match andT denotes

the ending position of match. GWGLE is used to generate

exact match fragment with minimum length 2. GIruGLE

assume two (nt) is matched, if it is watson-crick base pairs

(A-U,C-G) or wobble base pairs(G-U).

Because of that bulge structure is generated from list of
stems generated by local alignment with similar technique

to Knotseeker [16]. Overlapped bulges are also generated.

Figure 2 shows the combination for non overlapping bulge

structure generation.

@

Fig.2: Construction ofbulge loop ofsize one.

Filtering procedure is based on three restrictions as

proposed in [7]. First restriction is that the length of
unpaired uucleoticle must be three. Second restriction is on

trie energy of the stems. All the stem with energy <: 2.80

kcaVmol is chosen by extensive experimentation with test

cases and the energy is calculated using RNAeval as given

by Turner energy parameter [17].

3.2 Selecting Stems and Generating Structure

This section of the paper represents our major contribution'

Our task is to choose a single combination of filtered stems

generated by GUUGLE tl5l which can generate MFE

struc0.re. This subproblem is defined as, "From N stems in a

list choose & stems (where K < N) such that one stem appear

only once in any order for which score is minimum". A

dynamic programming technique is used to find out the best

combination in O(N') time. Using the recursive Selector

procedure given below our goal is achieved where base case

of the procedure is the structure with no stems or only single

sfem.

l: procedure Selector(current;previous)
2: if current > N then
3: return item(score(previous),list(previotts));
4'. else

5: a: selector(current*1, previous)
6: b: selector(current*1, current)
7: b.list.add(previous)
8: b.score : score(b.items)
9: ifa<bthen
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(c) Merging of subsructure

4. ExperimentalResults

Our algorithm is evaluated on 44 sequence including T-
RNA, Ribonuclease P RNA, nRNA, tmRNA, Ribosomal

otherwise we can choose the item set generated by' recursion, such as {a}, {b}, {a, b}. There are no
other options left to choose the combination of
items. This means, proposed recursion can generate
all possible colnbination of item set. Again, the
solution technique of this recurs.ign is bottom-up
and in each steps, two subproblems are correct so
the solution calculated from two subproblem ils aisd
correct.

3. Base cases: When the current item reached at the
end of list, ih other word when (current =: N ) then
algorithm return score(previous).

3.4 Scoring Function

Scoring function receives combination of stems selected by
selector procedure. These combinations are merged becausl
they might generate pseudoknot. To calculate secondary
structure without pseudoknot in the rest of the section
subsequences are generated by removing pseuknot
generating (all-paired) nucleotide from RNA sequence as
done in [8]. From these subsequences pseudoknot-free
secondary structure is generated by using dynamic
programming algorithm as done in Simfold [lg, l9]. Then
pseudoknotted structure is merged with pseuknot-free
structure to generated the all combined secondary sfructure.
Scoring function returns the one with minimum free energy
structure from pseudoknotted and all combined secondary
structure by using thermodynamic parameters [20] together
with those Cao and Chen models [21]. These steps are
shown in figure 3.
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lC: return a
I l: else
12: return b
13: end if
14: end if
15: end procedure

For RNA secondary structure problem all the combination
of stems are not valid. If two stem overlap in paired position
then they can't be merged. As an example [i:20j:50,1:10]
and [i:28j:70,1:8] are not valid combination. They can't be
merged because they overlap in 28 to 30 index. In this
situation two lists are chosen; one list generated with current
stem combined with other non-conflicting stems and second
liit generated without current stem. A list with best MFE
structure among them is kept. By removing tail recursion
the memory complexity is reduced from to O(K2) to O(K).

3.3 ProofofAlgorithm

There are two subproblems in each steps; l. Optimal result
excluding the current item. 2. Optimal result including the
current item. If we can solve these two subproblems
correctly then the solution ofcur.rent step is also correct.

l. Recurrence:selector(current,previous):
optimal(selector(current+ l,previous),selector(curre
nt+ l,current) + score(previous,current));

2. Proof of the correctness of recurrence: Assume
there are one item (a) in list and initial previous
item is zero, denotes no item. Tlren we have two
option to choose the optimal result. 1. Choose the
item (a) or 2. Don't choose the item. If there are
two item (a,b) then in the first step we can calculate
the optimal value without choosing any iterr4
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(b) Generating structure without pseudoknot
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(d) Selecting MFE from (a) and (c)

RNA, HIV-I-RT ligand RNA, Viral ribosomal RNA frame-
shifting signals, Anti-genomic HDV, Viral RNA, Virus and
telomerase RNA. Among them selected RNA sequence 14
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are pseudoknot free and othff 30 sequence has pseudoknot

in structure. The sequence type is summarized in Table l. In
selected sequences ll are long (130 nt to 354 nt) and other

33 sequences are relatively short (28 nt to 110 nt). To

compare the prediction efficiency with other algorithms we

computed sensitivity and specificity of the predicted

secondary structure is calculated. Table 2 shows the

comparative study of sensitivity (SE) and specificity (SP)

with different algorithms including ours. Sensitivity and

specificity are defined as:

l0 xTP5E:
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sP :9 "I=f. TP+FN

True positive (TP) denotes the number of correctly
predicted base pairs in the predicted structure. False

negative(FN) denotes ttre number of base pairs in original
structure that are not predicted in generated structure.

Finally False positive(FP) denotes the number of base pairs

that are incorrectly predicted in generated structure.

Perfectly predicted structure's sensitivity and specificity is

100. The specifrcity and sensitivity for structure generated

by other algorithm is also computed' PknotsRG-mfe 1.3

[22], NUPACK 3.0.4 [7], HotKnots 2.0 [8] and Dotknot

1.3.1 [23] are sued to compare the performance.

TP+FP

Table 1: RNA sequences, used in our experiment.

Sequence ID
DA0260, DAl280, DD0260, DY444l
ASE 00024,ASE 00l59,ASE 00161

T4 gene32

TMR 00027, TMR 00049, TMR 00007

cRw 00284, cRw 00285,CRW 00418,

cRw 00447,cRw 00451

HIVRT32, HIVRT33
MMTVvpk, T 2gene32, BWYV, pI(AA
HDV anti

ivtvtv, TMV.L, TMV.R csFV IRES,

BVDV IRES

PKB00001, PKB00045,
pKB00038, PKB00l 37,PKB00l 68, PKB000 I 6,

pK800256, PKB00 I 43,PK8001 55, PKB00l 14,

PKB002l6, PK800252, tobaccomosaicvirus

SKnot has predicted 6 structures with highest (100)

sensitivity and specificity where Hotknot [8] predicted 4.

SKnot has also predicted 6 best pseudoknot-free structure

out of 14. 3 predicted pseudoknot-free structure has best

sensitivity or specificity. It has predicted 19 structures

where both sensitivity and specificity are beffer than at least

one of the three other algorithms [22.7,8]. On the other

hand Hotknot [8], Pknot-RG [22] had predicted 11 and 7

Sequence Type
T RNA (pseudoknot free)

Ribonuclease P RNA (pesudoknot free)

mRNA
tmRNA

ribosomal RNA (peseudoknot free)

HIVIRT ligand RNA
viral ribosomal RNA frame-shifting signals

antigenomic HDV

Viral RNA

Virus

structures respectively. Also 9 predicted structures has

highest specificity or sensitivity. Sknot partially predicted 3

for which at least one of three algorithms predicted perfect

match. NUPACK [7] failed to predict any perfect match

where other algorithm predict total 9 perfect match' 3

predicted structure has best both specificrty and sensitivity.

The Hknot, Pknot-RG and NUPACK predict 4, 3, 0 best

pseudoknot-free structure respectively.

{{t..til.. ))) -.$ll
23 45 -12.65

Fig. 4: Dotknot predicted pseudoknot all base pair between 23 and 45 are sued to calculate sensitivity and specificity
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Table 2: Sensitivity and Specif-ity oTthelrediction

Sknot Ilotknot PKnotsRG NUPACK

ID Length SE SP SE SP SE SP SE SP

BWYV 28 55.00 100.00 88.89 100.00 100.00 100.00 55.56 r00.00
DAl280 73 100.00 91.30 100.00 91.30 r00.00 95.45 100.00 91.30
DD0260 76 90.48 95.00 52.38 57.89 28.57 28.57 33.33 29.17
DY444t 73 100.00 95.45 76.t9 69.57 19.05 16.67 71.43 65.22
HDV anti 9l 16.67 14.29 16.67 t4.29 16.67 t4.28 16.67 14.29
HIVRT32 35 41.94 47.27 54.55 100.00 45.45 62.50 45.45 62.5
DA0260 75 27.27 3 1.58 0 0 77.27 85.00 0 0
CSFV IRES 76 68.00 89.47 28.00 36.84 72.OO 85.71 72.00 85.71
BVDV IRES 73 52.00 61.90 28.00 JJ.JJ 72.00 90.00 52.00 65.00
TMV.R 105 29.4t 3t.25 52.94 64.29 67.64 74.t9 64.71 10.97
TMR 00007 181 45.45 62.50 54.84 64.15 s3.23 58.93 24.19 24.19
MMTVvpk 34 100.00 91.67 100.00 91.67 100.00 91.67 45.45 100.00
pKA A 36 100.00 92.31 100.00 92.31 r00.00 92.31 0 0
T2 gene32 JJ 100.00 100.00 100.00 100.00 100.00 100.00 58.33 70.00
T4 gene32 28 r00.00 100.00 r00.00 100.00 100.00 100.00 63.64 100.00
HIVRT33 35 4s.4s 100.00 90.91 100.00 100.00 100.00 0 0
TMV.L 84 68.00 89.47 68.00 85.00 80.00 83.33 52.00 61.90
TYMV 86 84.00 87.50 48.00 60.00 76.00 79.17 68.00 77.27
PKB0000l 47 100.00 100.00 66.67 100.00 100.00 100.00 66.67 100.00
PK800045 4t 100.00 100.00 0 0 100.00 100.00 60.00 66.67
PKI]00038 4l 62.50 45.45 62.50 4t.67 0 0 37.sO 30.00
PKI]OOl37 133 61.36 65.85 72.73 76.19 86.37 88.37 86.37 88.37
PKB00l68 105 73.53 86.2t 73.53 86.2r 76.47 89.66 82.35 77.78
PK800016 42 100.00 69.23 100.00 69.23 100.00 69.23 66.67 60.00
PKB00143 7l 91.67 88.00 91.67 88.00 75.00 72.00 66.67 84.21
PK800256 56 55.56 58.82 100.00 100.00 100.00 90.00 55.56 66.67
PKB00155 2t 100.00 100.00 100.00 100.00 100.00 r00.00 62.50 100.00
PKBOOI 14 JJ r00.00 100.00 90.00 100.00 90.00 r00.00 50.00 83.33
PK800216 45 64.29 75.00 64.29 75.00 35.71 35.71 64.29 100.00
PK800252 ll0 61.54 66.67 61.54 70.59 82.0s 84.21 61.54 68.57
ASE 00024 106 96.15 78.t2 30.77 25.87 88.46 76.67 92.31 77.42
ASE 00159 186 45.65 38.89 65.22 53.57 71.74 55.00 65.22 50.85
ASE 00161 ll0 9s.65 88.00 95.65 88.00 78.26 62.07 78.26 69.23
TMR 00049 139 40.62 41.94 56.25 64.29 59.38 50.00 53.12 s8.62
cRw 00284 t32 72.O9 70.45 72.09 70.45 67.44 72.05 46.51 52.63
cRw 00285 t3l 69.77 69.77 67.44 69.05 69.77 69.77 25.58 27:50
cRw 00418 113 9s.00 70.37 75.00 75.00 80.00 53.33 75.00 65.22
cRw 00447 104 95.24 100.00 95.24 100.00 80.95 70.83 76.19 100.00
cRw 00451 113 91.30 77.78 9l.30 77.78 69.56 55.17 39. l3 34.62
TO M VIRUS 214 40.00 5l.85 58.57 70.69 60.00 66.67 57.r4 52.83
TMR 00027 t74 6t.22 60.00 69.38 73.91 79.59 73.s8 57.14 52.83
Telo.human 2tt 64.00 46.38 60.00 46.15 54.00 42.86 s4.00 44.26
JRW 00020 354 60.58 56.70 90.38 81.74 85.57 80.90 62.50 56.52
cRw00054 350 87.25 83.96 82.35 80.77 87.27 85.58 7t.51 70.88
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and Ratio comparison between sknot and Dotknot

Sknot Dotknot

ID Length SE SP R SE SP R

BWYV 28 55.00 100.00 t/1 100.00 100.00 Ul

DAl280 73 100.00 91.30 0/0 100.00 37.04 0t2

DD0260 76 90.48 95.00 0/0 71.43 52.63 0t2

DY444l 73 100.00 95.45 0/0 44.44 23.53 012

HDV anti 91 16.67 14.29 u0 100.00 92.31 ut

HIVRT32 35 41.94 47.27 Ltl r00.00 100.00 Ul

DA0260 75 21.27 31.58 012 100.00 54.55 0/l

CSFV IRES 76 68.00 89.47 l/0 68.00 100.00 t/1

BVDV IRES 73 52.00 61.90 1/0 N/A N/A t/0

TMV.R 105 29.41 31.25 2/l 93.33 90.32 2t2

TMR 00007 181 45.45 62.50 312 74.47 77.78 3t3

MMTV vpk 34 100.00 9t.61 1/t 100.0 9t.67 vt
pKA A 36 100.00 92.31 Ul 100.0 91.67 Ul

T2 gene32 JJ 100.00 100.00 lll 100.00 r00.00 vt
T4 gene32 28 r00.00 100.00 Ut 100.00 100.00 y1

HIVRT33 35 45.45 100.00 1/0 100.00 100.00 Ur

TMV.L 84 68.00 89.47 311 96.00 92.31 5t.)

TYMV 86 84.00 87.50 t/1 75.00 66.6',7 !t
PKB00001 47 100.00 100.00 t/1 100.00 66.67 Ut

PK800045 4l 100.00 100.00 Ut 0.00 N/A t//2

PK800038 41 62.50 45.45 t/1 0.00 N/A U1

PK800137 133 6t.36 65.85 t//2 100.00 68.42 t//,

PKB00l68 105 73.53 86.21 l/0 0.00 N/A %

PKB000l6 42 r00.00 69.23 U0 N/A N/A U0

PK800143 1l 91.67 88.00 Ul 43.75 47.73 1/

PK800256 56 55.56 58.82 U1 N/A N/A UI

PKB00155 21 100.00 100.00 t/t 100.00 100.00 lt
PKB00l14 33 100.00 100.00 t/l 90.00 100.00 vl
PKB002l6 45 64.29 75.00 t/l 80.00 72.13 Ul

PK800252 110 61.54 66.67 tll 84.85 93.33 u1

ASE 00024 06 96.15 78.12 011 N/A 0.00 0lt

ASE 00159 186 45.65 38.89 012 25.00 15.39 0/1

ASE_00161 110 95.65 88.00 0/0 82.35 50.00 0/l

TMR 00049 39 40.62 41.94 212 66.67 61.54 212

cRw 00284 32 72.O9 70.45 0/0 0.00 0.00 012

cRw_00285 3l 69.77 69.77 . 0/0 0.00 0.00 0ls

cRw 00418 il3 95.00 70.37 0i0 NiA N/A 0/0

cRw 00447 04 95.24 100.00 0/0 N/A N/A 0/0

cRw_00451 113 91.30 77.78 5/3 94.64 94.64 515

TO M VIRUS 214 40.00 51.85 2l\ 0.00 0.00 2t5

1'MR_00027 174 61.22 50.00 0/0 66.67 54.55 0/t

Telo.human 2tl 64.00 46.38 1/0 61.29 51.35 U1

cRw 00020 354 60.58 56.70 0t2 0.00 0.00 0n

cRw00054 350 87.25 83.96 0/0 N/A N/A 0t5
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Fig. 5: Runtime(in seconds) comparison between SKnot and

Hotknot.

Dotknot [22] predicted only the pseudoknots and rhe
corresponding base pairs position and used these predicted
pseudoknotted structure's base pair for sensitivity and
specificity calculation. In case of SKnot full skucture is
used to calculate the sensitivity and specificity. The number
of pseudoknot in published structure by the number of
pseudoknot in predicted structure is used to calculate the
ratio. If (TP + FP : 0) or (Tp + FN : 0) or Dotknot
p-edicted no pseudoknot then N/A is used.

Sknot predicted 6 perfect match out of 9. 19 best structures
are predicted where both sensitivity and specificity are
higher than dotknot. Also Sknot failed to predict 3 perfect
match rvhere Dotknot predicted perfect match for those

sequences. Number of perfect match predicted by Dotknot is
6, 10 best structures are predicted over Sknot. Dotknot
failed to predict 2 perfect match where Sknot pr.edicted
those perfect match successfully. Dotknot failed to predict
12 pseudoknot free structure out'of 14 where Sknot
predicted l/2 pseudoknots for 4 pseudoknot free structure
out of 14.

Table 4 shows the comparative run time of SKnot, pknotRG

and NUPACK algorithms. Run time of PknotsRG is
impressive. SKnot run time is low compare to HotKnot. For
short sequence the time difference is small but for longer
sequence both algorithm's runtime has good difference.
Figure 5 shows the run time comparison of SKnot and
Flotknot [23] except the last five sequence in the list. These
sequences are not included in the graph because the required
time for these sequences in much higher and then graph
would be illegible for other sequences. Indeed for those five
sequences SKnot performs better. Figure 6 shor,vs the
sensitivity comparison among SKnot and other algorithm
while figure 7 shows the specificity comparison anong
SKnot and other algorithm.

6
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;
E

- 
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Table 4: Run time (in seconds) of predictions

ID I Lengrn sl{.not HotKnot PKnots RG NUPACT
BWYV 28 0.094 0.227 0.007 0.007
DAl280 73 1.55 2.26 0.015 0.032
DD0260 76 1.49 2.20 0.017 0.037
DY444t 73 t.07 4.57 0.021 0.033
HDV anti 9l 3.93 4.13 0.02s 0.053
HIVRT32 35 0.02 0.22 0.o2 0.02
DA0260 75 2.12 4.43 0.015 0.053
CSFV IRES 76 1.19 1.24 0.016 0.035
BVDV IRES 73 0.89 0.8'l 0.01s 0.032
TMV.R 105 4.25 I 1.34 0.037 0.082
TMR 00007 l8r 38.3s7 69.82 0.2s 0.398
MMTVvok 34 0.029 0.26 0.007 0.009
PKA A 36 0.064 0.284 0.007 0.01
T2 pene32 JJ 0.027 0.21 0.006 0.008
T4 sene32 28 0.013 0.21 0.007 0.008
HIVRT33 35 0.022 0.263 0.006 0.008
TMV.L 84 1.65 s.69 0.02 0.044
I'YMV 86 r.63 4.57 0.02 0.043
PKB0000l 47 0.1I 0.24 0.007 0.013
PKB00045 4t 0.o42 0.268 0.007 0.009
PKB00038 4l 0.142 0.734 0.007 0.011
PKB00l37 133 6.87 47.67 0.r0 0.157
PKB00l68 105 3.93 8.60 0.038 0.081
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PKB000l6 42 0.12 0362 0.008 0.009

PKB00143 7l 0.72 2.38 0.014 0.032

PKB00256 56 0.25 0.37 0.01 0.018

PKB00l55 21 0.03 0.23 0.008 0.007

PKB00l14 33 0.02 o.2l 0.007 0.009

pKROO? I 5 45 0.06 0.26 0.008 0.013

PKB00252 l0 5.70 10.77 0.045 0. l0

ASE 00024 06 7,98 6.65 0.037 0.081

ASE 001s9 86 39.57 87.48 0.30 0.41

ASE 00161 110 2.02 3.84 0.043 0.091

'rMR O004q 39 7.73 12. l0 0.080 0.1 59

(-n\V 00?R4 32 8.28 4.84 0.102 0.167

cRw 00285 3l 10.41 15.15 0.076 0.450

CRW OO41B l3 0.803 1.l6 0.o57 0.086

cRV/ 00447 o4 0.48 1.03 0.031 0.067

cnw 00451 l13 1.30 2.59 0.042 0.091

TO M VIRUS 2t4 65.74 1089.92 0.045 0.65

TMI{ 00027 174 25.15 258.87 0.20 0.322

Telo.human 2t1 182.718 95.209 0.478 0.064

cRw 00020 354 t146.39 1 698.1 3 3.165 3.104

cRw000s4 350 86.57 2428.418 2.803 2S22
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Fig.7: Comparison of specificity(SP) between SKnot and other algorithms

5. Discussion

As heuristic approach is used in our algorithm to reduce the
search space it is not guaranteed to find the optimal
structwe. Sknot predicted 6 perfect match out of 44
sequence where Hotknot can predict 4 prefect match, 7 by
PknotRG and zero by NUPACK. For BWyV sequence, we
found different optimal structure with respect to energy
model with Dirks and Pierce (DP) [7] and Cao and Chen
(CC) [21] models. Also the energy of predicted stmcture of
FWYV using CC energy model is low with respect to
original or published structure's energy. Original sfructure's
free energy is -2.116 kcal/mol where predicted structure's
free energy is -8.05 kcal/mol. Original structure's energy
should be lowest but energy model returns lowest energy for
other strucfure, indicating the weakness of energy model.

Sknot predicted 5 structure with best sensitivity and
specificity value for long pseudoknot free stl-ucture out of 10
and 2 structure has best sensitivity or specificity value.
Sknot failed to predict best structure for 1 pseudoknot free
sequence. On the other hand PknotRG predicted 2
(CRW_00285,ASE_00159) structure where CRW_00285
has the same sensitivity and specificity predicted by Sknot.
Also Sknot predict 2 best structures out of three short
pseudoknot free strucfure.

Sknot has sensitivity < 50.00 on 9 structure out of 44
sfructure. One of the this 9 structure is the best predicted
structure with respect of other algorithms. 19 structure has
sensitivity > 80.00. On the other hand Hotknot predict 14

structure which sensitivity > 80.00. Future work will be to
increase prediction efficiency and make it laster using better
alignment algorithm and energy evaluation technique
respectively.

6. Conclusion

There is no doubt that RNA secondary structure prediction
with pseudoknot is very inrportant task. Our algorithm can
predict I{-type pseudoknofted structure as well as

pseudoknot free structure more efficiently. The weak point
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of our algorithm is that it's not fast like pknotRG or
NUPACK. There are more options available to improve our
algorithm by changing energy model, and faster and
efficient local alignment algorithm. In future, we will extend
our algorithm to adopt more complex type of pseudoknot.
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