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Abstract

Dynamic programming algorithm for RNA secondary structure prediction including pseudoknot is efficient but
expensive. On the other hand heuristic algorithm provide a good alternative for effective solution. We present SKnot, a
heuristic algorithm for RNA secondary structure prediction including pseudoknot. Main idea of the algorithm is to find
the promising candidate stems which can generate minimum free energy structure including pseudoknot. The
algorithm is evaluated on 44 RNA sequences of various types. Experimental result suggest that SKnot predict
secondary structure better in most cases in terms of sensitivity and specificity compared to other well known

algorithms like PKnotRG, NUPACK and DotKnot.

Keywords: RNA Pseudoknots, Heuristic Algorithm,
Dynamic Programming, RNA Secondary Structure.

1. Introduction

RNA carries genetic information for a cell which will
express for protein generation. The key factor of RNA is it's
3D structure. This 3D structure can be represented as 2D
secondary structure which contains the collection of
hydrogen bonds between the base pairs. Figure 1 represents
the structure of Hepatitis Delta Virus (HDV) ribozyme [1]
sequence. Secondary structure contains stem and loop which
has a recursive relation between them. Figure 1 shows stem-
base by line. Pseudoknots are formed between unpaired base
in locps and the crossed arcs represent the pseudoknots.
Pseudoknots also plays important role in protein function.
For example, in ribosomal frame-shifting [2] and regulation
of translation and splicing [3].

We proposed a new algorithm to generate RNA secondary
structure  including pseudoknot. Experimental results
suggest that our algorithm provide better result in terms of
speed, sensitivity and specificity than most of the available
algorithms including Dotknot. Time complexity of our
algorithm is O(K?) and space complexity is O(2*K) where
K is number of filtered stem. Overall time complexity of
RNA secondary structure prediction is O(K**N?) where N is
the RNA sequence length.

4 GECCRGCAUGDS

it kS

e

Fig. 1: Hepatitis Delta Virus (HDV) ribozyme structure

2. Background and Related Work

Several researchers proposed dynamic programming
algorithms that find the minimum free energy structure from
a restricted class that includes certain pseudoknotted
structures [4, 5, 6, 7]. Rivas and Eddy has proposed
complete recursive algorithm to predict secondary structure.
Their algorithm calculate all possible secondary structure to
choose best structure including pseudoknots. Rivas and
Eddy provides complete model with parameters to calculate
the free energy of the structure. However runtime
complexity of O(n®) makes it difficult to run this algorithm
for sequence with more than 150 nucleotides (nf). Another
limitation of this algorithm is that free energy estimates of
pseudoknotted structures component used in the algorithm
are not optimized. As a consequence, the minimum free
energy prediction is often not correct [8]. The pknotsRG-
MFE [9] is another dynamic programming algorithm
proposed by Reeder and Giegerich with "canonization
rules". They proposed three rules for structure generation
that helps to reduce the runtime in O(n*). Their algorithm
also provides suboptimal structures [9] and base-pairing
probabilities [7].

In contrast heuristic approaches provide no guarantees to
find the minimal energy structure but we can calculate RNA
secondary structure for larger sequence and they are less
restricted than the dynamic programming algorithms.
Heuristic algorithms are not limited to sampling from a
restricted sub-class, a feature that becomes more important
for longer sequence. In last few years, there have been
significant advances in the development of heuristic
algorithms, leading to improvements in solving RNA
secondary structure prediction problems [10]. A
disadvantage of this type of approach is that it is not
possible to remove or add stems later. Van Batenburg et al.
[11] showed that genetic algorithm approach could be
promising to predict the pseudoknotted structures by
addressing the shortcomings of heuristics algorithm. He
described results on a computer simulation of RNA folding
pathways using a genetic algorithm for structure prediction
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[12]. Another effective algorithm called STAR [12],
maintains a list of stems that can be added to a partially
formed structure with probability that depends on the free
energy of the stem as well as on the free energy of the loop.
Their algorithm also includes a mechanism to remove stems
and a crossover mechanism for producing new structures
from two structures. Their algorithm can correctly predict
base pairs ranged from 62% to 87%. One drawback of
STAR algorithm is that it requires a user with knowledge to
take decision in several steps. Ruan et al. [13] presented a
heuristic algorithm for pseudoknots structure prediction
called iterative loop matchig (ILM). ILM [13] generates
pseudoknotted secondary  structures  from multiple
homologous sequences. A computer simulation of the
folding dynamics of an RNA molecule was proposed by
Isambert and Siggia [14]. Their method can provide the
identification of kinetically trapped states that may be on the
fulding pathway of the RNA molecule.

3. Our Proposed Algorithm

We have proposed an algorithm as a solution to the RNA
secondary structure prediction named SKnot. Existing
algorithms are used for local alignment and filtering while a
stem selection algorithm is proposed. The pseudocode of the
algorithm is given in the SKnotted structure procedure and
detail solution is described in the following subsections.

1: procedure Sknotted structure
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2: Generate stems using Local Alignment Algorithm
3: Filter stems to reduce search space
4: Select best combination of stems:
5: generate secondary structure

6: calculate score for structure and choose MFE structure
7: end procedure

3.1 Generating initial list and filtering

GUUGLE [15] is used as local alignment algorithm.
GUUGLE can generate exact match between the target
sequence and query sequence. GUUGLE returns a fragment
of sequence containing (i,/,/) where I denotes the length of
match, i denotes the starting position of match and j denotes
the ending position of match. GUUGLE is used to generate
exact match fragment with minimum length 2. GUUGLE
assume two (nt) is matched, if it is watson-crick base pairs
(A-U,C-G) or wobble base pairs(G-U).

Because of that bulge structure is generated from list of
stems generated by local alignment with similar technique
to Knotseeker [16]. Overlapped bulges are also generated.
Figure 2 shows the combination for non overlapping bulge
structure generation.

Fig. 2: Construction of bulge loop of size one.

Filtering procedure is based on three restrictions as
proposed in [17]. First restriction is that the length of
unpaired nucleotide must be three. Second restriction is on
tiie energy of the stems. All the stem with energy <= 2.80
kcal/mol is chosen by extensive experimentation with test
cases and the energy is calculated using RNAeval as given
by Turner energy parameter [17].

3.2 Selecting Stems and Generating Structure

This section of the paper represents our major contribution.
Our task is to choose a single combination of filtered stems
generated by GUUGLE [15] which can generate MFE
structure. This subproblem is defined as, "From N stems in a
list choose k stems (where K < N) such that one stem appear
only once in any order for which score is minimum". A

dynamic programming technique is used to find out the best
combination in O(N?) time. Using the recursive Selector
procedure given below our goal is achieved where base case
of the procedure is the structure with no stems or only single
stem.

1: procedure Selector(current; previous)

2 if current > N then

3 return item(score(previous),list(previous));
4 else

5¢ a = selector(current+1, previous)
6 b = selector(current+1, current)
7 b.list.add(previous)

8 b.score = score(b.items)

9

if a <b then

]
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19: return a
11 else

12: return b
13: end if

14: end if

15: end procedure

For RNA secondary structure problem all the combination
of stems are not valid. If two stem overlap in paired position
then they can't be merged. As an example [i:20,j:50,1:10]
and [i:28,j:70,1:8] are not valid combination. They can't be
merged because they.overlap in 28 to 30 index. In this
situation two lists are chosen; one list generated with current
stem combined with other non-conflicting stems and second
Iist generated without current stem. A list with best MFE
structure among them is kept. By removing tail recursion
the memory complexity is reduced from to O(K?) to O(K).

3.3 Proof of Algorithm

There are two subproblems in each steps; 1. Optimal result
excluding the current item. 2. Optimal result including the
current item. If we can solve these two subproblems
correctly then the solution of current step is also correct.

1. Recurrence:selector(current,previous)=
optimal(selector(current+1,previous),selector(curre
nt+1,current) + score(previous,current));

2. Proof of the correctness of recurrence: Assume
there are one item (a) in list and initial previous
item is zero, denotes no item. Then we have two
option to choose the optimal result. 1. Choose the
item (a) or 2. Don't choose the item. If there are
two item (a,b) then in the first step we can calculate
the optimal value without choosing any item,
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4. Experimental Results

Our algorithm is evaluated on 44 sequence including T-
RNA, Ribonuclease P RNA, mRNA, tmRNA, Ribosomal

otherwise we can choose the item set generated by
recursion, such as {a}, {b}, {a, b}. There are no
other options left to choose the combination of
items. This means, proposed recursion can generate
all possible combination of item set. Again, the
solution technique of this rechrsj_on is bottom-up
and in each steps, two subproblems are correct so
the solution calculated from two subproblem is also
correct.

3. Base cases: When the current item reached at the
end of list, in other word when (current == N ) then
algorithm return score(previous).

3.4 Scoring Function

Scoring function receives combination of stems selected by
selector procedure. These combinations are merged because
they might generate pseudoknot. To calculate secondary
structure without pseudoknot in the rest of the section
subsequences are generated by removing pseuknot
generating (all-paired) nucleotide from RNA sequence as
done in [8]. From these subsequences pseudoknot-free
secondary structure is generated by using dynamic
programming algorithm as done in Simfold [18, 19]. Then
pseudoknotted structure is merged with pseuknot-free
structure to generated the all combined secondary structure.
Scoring function returns the one with minimum free energy
structure from pseudoknotted and all combined secondary
structure by using thermodynamic parameters [20] together
with those Cao and Chen models [21]. These steps are
shown in figure 3.

(b) Generating structure without pseudoknot
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(d) Selecting MFE from (a) and (c)

RNA, HIV-1-RT ligand RNA, Viral ribosomal RNA frame-
shifting signals, Anti-genomic HDV, Viral RNA, Virus and
telomerase RNA. Among them selected RNA sequence 14
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are pseudoknot free and other 30 sequence has pseudoknot
in structure. The sequence type is summarized in Table 1. In
selected sequences 11 are long (130 nt to 354 nt) and other
33 sequences are relatively short (28 nt to 110 nt). To
compare the prediction efficiency with other algorithms we
computed sensitivity and specificity of the - predicted
secondary structure is calculated. Table 2 shows the
comparative study of sensitivity (SE) and specificity (SP)
with different algorithms including ours. Sensitivity and
specificity are defined as: .

10X TP

E=————
R TP+ FP
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_ 100 x TP
" TP+FN

True positive (TP) denotes the number of correctly
predicted base pairs in the predicted structure. False
negative(FN) denotes the number of base pairs in original
structure that are not predicted in generated structure.
Finally False positive(FP) denotes the number of base pairs
that are incorrectly predicted in generated structure.
Perfectly predicted structure's sensitivity and specificity is
100. The specificity and sensitivity for structure generated
by other algorithm is also computed. PknotsRG-mfe 1.3
[22], NUPACK 3.0.4 [7], HotKnots 2.0 [8] and Dotknot
1.3.1 [23] are sued to compare the performance.

Table 1: RNA sequences, used in our experiment.

Sequence ID

DA0260, DA1280, DD0260, DY4441

ASE 00024,ASE 00159,ASE 00161

T4 gene32

TMR 00027, TMR 00049, TMR 00007

CRW 00284, CRW 00285,CRW 00418,

CRW 00447,CRW 00451

HIVRT32, HIVRT33

MMTVvpk, T2gene32, BWYV, pKAA

HDV anti

TYMV, TMV.L, TMV R CSFV IRES,

BVDV IRES

PKB00001, PKB00045,

PKBO00038, PKB00137,PKB00168, PKB00016,
PKB00256, PKB00143,PKB00155, PKB00114,
PKB00216, PKB00252, tobaccomosaicvirus

SKnot has predicted 6 structures with highest (100)
sensitivity and specificity where Hotknot [8] predicted 4.
SXnot has also predicted 6 best pseudoknot-free structure
out of 14. 3 predicted pseudoknot-free structure has best
sensitivity or specificity. It has predicted 19 structures
where both sensitivity and specificity are better than at least
one of the three other algorithms [22, 7, 8]. On the other
hand Hotknot [8], Pknot-RG [22] had predicted 11 and 7

Sequence Type
T RNA (pseudoknot free)
Ribonuclease P RNA (pesudoknot free)
mRNA
tmRNA

ribosomal RNA (peseudoknot free)
HIVIRT ligand RNA
viral ribosomal RNA frame-shifting signals
antigenomic HDV

Viral RNA

Virus

structures respectively. Also 9 predicted structures has
highest specificity or sensitivity. Sknot partially predicted 3
for which at least one of three algorithms predicted perfect
match. NUPACK [7] failed to predict any perfect match
where other algorithm predict total 9 perfect match. 3
predicted structure has best both specificity and sensitivity.
The Hknot, Pknot-RG and NUPACK predict 4, 3, 0 best
pseudoknot-free structure respectively.

 J
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Fig. 4: Dotknot predicted pseudoknot all base pair between 23 and 45 are sued to calculate sensitivity and specificity.
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Table 2: Sensitivity and Specificity of the prediction

Sknot Hotknot PKnotsRG NUPACK
ID Length SE SpP SE SP SE SpP SE SpP
BWYV 28 55.00 100.00 88.89 100.00 100.00 100.00 55.56 100.00
DA1280 73 100.00 | 91.30 100.00 91.30 100.00 95.45 100.00 91.30
DD0260 76 90.48 95.00 52.38 57.89 2857 28.57 33.33 29.17
DY4441 78 100.00 | 95.45 76.19 69.57 19.05 16.67 71.43 65.22
HDV anti 91 16.67 14.29 16.67 14.29 16.67 14.28 16.67 14.29
HIVRT32 35 41.94 47.27 54.55 100.00 45.45 62.50 45.45 62.5
[ DA0260 i 75 27.27 31.58 0 0 77.27 85.00 0 0
CSFV IRES 76 68.00 89.47 28.00 36.84 72.00 85.71 72.00 85.71
BVDV IRES 73 52.00 61.90 28.00 33.33 72.00 90.00 52.00 65.00
TMV.R 105 29.41 3125 52.94 64.29 67.64 74.19 64.71 70.97
TMR 00007 181 45.45 62.50 54.84 64.15 53.23 58.93 24.19 24.19
MMTV vpk 34 100.00 | 91.67 100.00 91.67 100.00 91.67 45.45 100.00
pKA A 36 100.00 | 92.31 100.00 92.31 100.00 92.31 0 0
T2 gene32 33 100.00 | 100.00 | 100.00 100.00 100.00 100.00 58.33 - 70.00
T4 gene32 28 100.00 | 100.00 | 100.00 100.00 100.00 100.00 63.64 100.00
HIVRT33 25 45.45 100.00 90.91 100.00 100.00 100.00 0 0
TMV.L 84 68.00 89.47 68.00 85.00 80.00 83.33 52.00 61.90
TYMV 86 84.00 87.50 48.00 60.00 76.00 79.17 68.00 127
PKB00001 47 100.00 | 100.00 66.67 100.00 100.00 100.00 66.67 100.00
PKB00045 41 100.00 | 100.00 0 0 100.00 100.00 60.00 66.67
PKB00038 41 62.50 45.45 62.50 41.67 0 0 37.50 30.00
PKB00137 133 61.36 65.85 72.93 76.19 86.37 88.37 86.37 88.37
PKB00168 105 7353 86.21 7353 86.21 76.47 89.66 82.35 T748
PKB00016 42 100.00 | 69.23 100.00 69.23 100.00 69.23 66.67 60.00
PKB00143 7l 91.67 88.00 91.67 88.00 75.00 72.00 66.67 84.21
PKB00256 56 55.56 58.82 100.00 100.00 100.00 90.00 55.56 66.67
PKB00155 21 100.00 | 100.00 | 100.00 100.00 100.00 100.00 62.50 100.00
PKB00114 33 100.00 | 100.00 90.00 100.00 90.00 100.00 . 50.00 83.33
PKB00216 45 64.29 75.00 64.29 75.00 35.71 35.71 64.29 100.00
PKB00252 110 61.54 66.67 61.54 70.59 82.05 84.21 61.54 68.57
ASE 00024 106 96.15 78.12 30.77 25.87 88.46 76.67 92.31 7742
ASE 00159 186 45.65 38.89 65.22 53.57 71.74 55.00 65.22 50.85
ASE 00161 110 95.65 88.00 95.65 88.00 78.26 62.07 78.26 69.23
TMR 00049 139 40.62 41.94 56.25 64.29 59.38 50.00 53.12 58.62
CRW_00284 132 72.09 70.45 72.09 70.45 67.44 72.05 46.51 52.63
CRW_00285 131 69.77 69.77 67.44 69.05 69.77 69.77 25.58 27.50
CRW 00418 113 95.00 70.37 75.00 75.00 80.00 53.33 75.00 65.22
CRW_00447 104 95.24 100.00 95.24 100.00 80.95 70.83 76.19 100.00
CRW_00451 113 91.30 77.78 91.30 77.78 69.56 55.17 39.13 34.62
TO M VIRUS 214 40.00 51.85 58.57 70.69 60.00 66.67 57.14 52.83
TMR_00027 174 61.22 60.00 69.38 73.91 79.59 73.58 57.14 52.83
Telo.human 211 64.00 | 46.38 60.00 46.15 54.00 42.86 54.00 44.26
CRW_00020 354 60.58 56.70 90.38 81.74 85.57 80.90 62.50 56.52
CRWO00054 350 87.25 83.96 82.35 80.77 87.27 85.58 71.57 70.88

]
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Table 3: Sensitivity and Specificity and Ratio comparison between sknot and Dotknot
Sknot Dotknot

ID Length SE SP R SE SP R
BWYV 28 55.00 100.00 /1 100.00 100.00 1/1
DA1280 73 100.00 91.30 0/0 100.00 37.04 0/2
DD0260 76 90.48 95.00 0/0 71.43 52.63 0/2
DY4441 73 100.00 95.45 0/0 44.44 23.53 0/2
HDV anti 91 16.67 14.29 1/0 100.00 92.31 1/1
HIVRT32 35 41.94 47.27 111 100.00 100.00 171
DA0260 < 75 27727 31.58 0/2 100.00 54.55 01
CSFV IRES 76 68.00 89.47 1/0 68.00 100.00 1/1
BVDV IRES 73 52.00 61.90 1/0 N/A N/A 1/0
TMV.R 105 29.41 31.25 2/1 93.33 90.32 2/2
TMR 00007 181 45.45 62.50 3/2 74.47 77.78 3/3
MMTYV vpk 34 100.00 91.67 171 100.0 91.67 1/1
pKA A 36 100.00 9931 1/1 100.0 91.67 111
T2 gene32 33 100.00 100.00 1/1 100.00 100.00 1/1
T4 gene32 28 100.00 100.00 11 100.00 100.00 1/1
HIVRT33 35 45.45 100.00 1/0 100.00 100.00 11
TMV.L 84 68.00 89.47 3N 96.00 92.31 3/3
TYMV 86 84.00 87.50 1/1 75.00 66.67 1/1
PKB00001 47 100.00 100.00 1/1 100.00 66.67 11
PKB00045 41 100.00 100.00 1/1 0.00 N/A 3
PKB00038 41 62.50 45.45 1/1 0.00 N/A 11
PKB00137 133 61.36 65.85 Vs 100.00 68.42 s
PKB00168 105 73i53 86.21 1/0 0.00 N/A )
PK1B00016 42 100.00 69.23 ., 1/0 N/A N/A 1/0
PKB00143 7 91.67 88.00 1/1 43.75 47.73 Ya
PKB00256 56 55.56 58.82 1/1 N/A N/A 11
PKBO00155 21 100.00 100.00 1/1 100.00 100.00 11
PKBO00114 33 100.00 100.00 1/1 90.00 100.00 1/1
PKBO00216 45 64.29 75.00 171 80.00 7273 1/1
PKB00252 110 61.54 66.67 1/1 84.85 93.33 11
ASE 00024 106 96.15 78.12 0/1 N/A 0.00 0/1
ASE 00159 186 45.65 38.89 0/2 25.00 15.39 0/1
ASE 00161 110 95.65 88.00 0/0 82.35 50.00 0/1
TMR_00049 139 40.62 41.94 2/2 66.67 61.54 2/2
CRW_00284 132 72.09 70.45 0/0 0.00 0.00 0/2
CRW_00285 131 69.77 6T 0/0 0.00 0.00 0/5
CRW_00418 113 95.00 70,37 0/0 N/A N/A 0/0
CRW 00447 104 95.24 100.00 0/0 N/A N/A 0/0
CRW 00451 113 91.30 77.78 5/3 94.64 94.64 5/5
TO M VIRUS 214 40.00 51.85 2/1 0.00 0.00 2/5
TMR_00027 174 61.22 60.00 0/0 66.67 54.55 0/1
Telo.human 211 64.00 46.38 1/0 61.29 51:35 1/1
CRW_00020 354 60.58 56.70 0/2 0.00 0.00 0/1
l CRW00054 350 87.25 83.96 0/0 N/A N/A 0/5
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Fig. 5: Runtime(in seconds) comparison between SKnot and
Hotknot. .

Dotknot [22] predicted only the pseudoknots and the
corresponding base pairs position and used these predicted
pseudoknotted structure's base pair for sensitivity and
specificity calculation. In case of SKnot full structure is
used to calculate the sensitivity and specificity. The number
of pseudoknot in published structure by the number of
pseudoknot in predicted structure is used to calculate the
ratio. If (TP + FP = 0) or (TP + FN = 0) or Dotknot
predicted no pseudoknot then N/A is used.

Sknot predicted 6 perfect match out of 9. 19 best structures
are predicted where both sensitivity and specificity are
higher than dotknot. Also Sknot failed to predict 3 perfect
match where Dotknot predicted perfect match for those

sequences. Number of perfect match predicted by Dotknot is
6, 10 best structures are predicted over Sknot. Dotknot
failed to predict 2 perfect match where Sknot predicted
those perfect match successfully. Dotknot failed to predict
12 pseudoknot free structure out of 14 where Sknot
predicted 1/2 pseudoknots for 4 pseudoknot free structure
out of 14.

Table 4 shows the comparative run time of SKnot, PknotRG
and NUPACK algorithms. Run time of PknotsRG is
impressive. SKnot run time is low compare to HotKnot. For
short sequence the time difference is small but for longer
sequence both algorithm's runtime has good difference.
Figure 5 shows the run time comparison of SKnot and
Hotknot [23] except the last five sequence in the list. These
sequences are not included in the graph because the required
time for these sequences in much higher and then graph
would be illegible for other sequences. Indeed for those five
sequences SKnot performs better. Figure 6 shows the
sensitivity comparison among SKnot and other algorithm
while figure 7 shows the specificity comparison among
SKnot and other algorithm.

Table 4: Run time (in seconds) of predictions
ID Length SKnot HotKnot PKnots RG NUPACT
BWYV : 28 0.094 0.227 0.007 0.007
DA1280 73 1.55 2.26 0.015 0.032
DD0260 76 1.49 2.20 : 0.017 0.037
DY4441 - 73 107 4.57 0.021 0.033
HDV anti 91 393 4.13 0.025 0.053
HIVRT32 35 0.02 0.22 0.02 0.02
DA0260 75 ' 2.12 443 0.015 0.053
CSFV IRES 76 1.19 1.24 0.016 0.035
BVDV IRES 78 0.89 0.84 0.015 0.032
TMV.R 105 4.25 11.34 0.037 0.082
TMR 00007 181 38.357 69.82 0.25 0.398
MMTYV vpk 34 0.029 0.26 0.007 0.009
KA A 36 0.064 0.284 0.007 0.01
T2 gene32 33 0.027 0.21 0.006 0.008
T4 gene32 28 0.013 0.21 0.007 0.008
HIVRT33 35 0.022 0.263 0.006 0.008
TMV.L 84 1.65 5.69 0.02 0.044
TYMV 86 1.63 4.57 0.02 0.043
PKB00001 47 0.11 0.24 0.007 0.013
PKB00045 41 0.042 0.268 0.007 0.009
PKB00038 41 0.142 0.734 0.007 0.011
PKB00137 133 6.87 47.67 0.10 0.157
PKB00168 , . 105 398 8.60 0.038 0.081
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PKB00016 42 0.12 0.362 0.008 0.009
PKB00143 7l 0.72 2.38 0.014 0.032
PKB00256 56 0.25 0.3 0.01 0.018
PKB00155 21 0.03 0.23 0.008 0.007
PKB00114 33 0.02 0.21 0.007 0.009
PKB00216 45 0.06 0.26 0.008 0.013
PKB00252 110 5.70 10.77 0.045 0.10
ASE 00024 106 7:98 6.65 0:037 0.081
ASE 00159 186 3957 87.48 0.30 0.47
ASE (0161 110 2.02 3.84 0.043 0.091
TMR 00049 139 03 12.10 0.080 0.159
CRW 00284 132 8.28 4.84 0.102 0.167
CRW 00285 131 10.41 15.15 0.076 0.450
CRW 00418 143 0.803 1.16 0.057 0.086
CRW 00447 104 0.48 1.03 0.031 0.067
CRW 00451 113 1.30 2.59 0.042 0.091

TO M VIRUS 214 65.74 1089.92 0.045 0.65
TMR 00027 174 25 258.87 0.20 0.322
Telo.human 211 182.718 95.209 0.478 0.064

, CRW_00020 354 1146.39 1698.13 3.165 3.104

I CRWO00054 350 86.57 2428.418 2.803 21922
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Fig. 6: Comparison of sensitivity(SE) between SKnot and other algorithms.
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Fig. 7: Comparison of specificity(SP) between SKnot and other algorithms.

5. Discussion

As heuristic approach is used in our algorithm to reduce the
search space it is not guaranteed to find the optimal
structure. Sknot predicted 6 perfect match out of 44
sequence where Hotknot can predict 4 prefect match, 7 by
PknotRG and zero by NUPACK. For BWYV sequence, we
found different optimal structure with respect to energy
model with Dirks and Pierce (DP) [7] and Cao and Chen
(CC) [21] models. Also the energy of predicted structure of
EWYV using CC energy model is low with respect to
original or published structure's energy. Original structure's
free energy is -2.116 kcal/mol where predicted structure's
free energy is -8.05 kcal/mol. Original structure's energy
should be lowest but energy model returns lowest energy for
other structure, indicating the weakness of energy model.

Sknot predicted 5 structure with best sensitivity and
specificity value for long pseudoknot free structure out of 10
and 2 structure has best sensitivity or specificity value.
Sknot failed to predict best structure for 1 pseudoknot free
sequence. On the other hand PknotRG predicted 2
(CRW_00285,ASE_00159) structure where CRW 00285
bas the same sensitivity and specificity predicted by Sknot.
Also Sknot predict 2 best structures out of three short
pseudoknot free structure.

Sknot has sensitivity < 50.00 on 9 structure out of 44
structure. One of the this 9 structure is the best predicted
structure with respect of other algorithms. 19 structure has
sensitivity > 80.00. On the other hand Hotknot predict 14
structure which sensitivity > 80.00. Future work will be to
increase prediction efficiency and make it faster using better
alignment algorithm and energy evaluation technique
respectively.

6. Conclusion

There is no doubt that RNA secondary structure prediction
with pseudoknot is very important task. Our algorithm can

predict H-type pseudoknotted structure as well as
pseudoknot free structure more efficiently. The weak point

of our algorithm is that it's not fast like PknotRG or
NUPACK. There are more options available to improve our
algorithm by changing energy model, and faster and
efficient local alignment algorithm. In future, we will extend
our algorithm to adopt more complex type of pseudoknot.
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