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ABSTRACT

This paper investigates the development of a non-linear model inversion controller for air vehicle system utilizing
artificial neural networks and particle swarm optimization (PSO). An adaptive neural network element is integrated
with feedback control system to compensate for model inversion errors. Two control structures: direct inverse model
and internal model control are considered in this work. A twin rotor multi-input multi-output system (TRMS) is
considered as a test rig for air vehicle system. A non-linear inverse model is developed for the pitch movement of
TRMS utilizing artificial neural network (ANN) which is used as one of the main components of control system for
input tracking. A relatively new population-based, self-adaptive optimization, PSO, is used to train the inverse model
in order to avoid premature convergence to local minima. The control scheme shows good tracking capability with
satisfactory level of rise time, settling time and steady state error.

Keywords: Control, Inverse Modeling, Neural Networks,
Particle Swarm Optimization, Twin Rotor System.

1. Introduction

Recent advances in air vehicle system have led to the
development of many new concepts in aircraft design.
Compared to conventional fixed-wing aircraft, helicopters
are much more complex in terms of system dynamics and
control because the inputs are not directly applied torques or
forces, but rather aerodynamic torques and forces created by
the main and tail rotors. Moreover, a significant cross-
coupling exists between the rotors which in turn increases
system nonlinearities and uncertainties. These system
characteristics present formidable challenges in modelling,
control design, and implementation. A scaled and simplified
version of practical helicopter, namely twin rotor multi-
input multi-output system, (TRMS)1 can be perceived as
“air vehicle” and is being used as an interesting ‘test rig’ for
aerodynamic modelling and control problems.2-4 Dynamic
inversion5 is an interesting feedback linearization control
system design methodology that continues to find a wide
acceptance in the control engineering community, with
many applications and extensions, particularly in the field of
flight control of air vehicle systems.4-5

Artificial Neural Networks (ANNs) are circuits, computer
algorithms, or mathematical representations loosely inspired
by the massively connected set of neurons that form
biological neural networks.6 The universal approximation
capabilities of ANN have made it a popular choice for
modeling nonlinear systems and for implementing general-
purpose nonlinear controllers.7 The neural network may
often get stuck in a local minimum with standard
backpropagation. To enable the ANN to slide through a
local minimum, several modifications and new   algorithms
have been proposed and are used in practice.

Particle swarm optimization (PSO) is a population-based,
self-adaptive search optimization technique.8-9 PSO has

proved to be efficient at training NNs and solving
unconstrained global optimization problems mainly due to
its simplicity, low memory requirement, low computational
cost, fast convergence and its good overall performance.10

The objective of this paper is to design controller for pitch
movement of TRMS using ANN and PSO algorithm. An
inverse model of TRMS is developed using neural network
which is trained by PSO algorithm. The designed inverse
model is used as the main components of a feedback control
scheme to control the movement of TRMS. Two control
structures: direct inverse model and internal model control
are designed for input tracking of TRMS and their
performances are tested.

2. Neural Network

A generalized architecture of multi-layer perceptrons (MLP)
representing its basic functions is shown in Figure 1. A
basic unit of this network or a neuron performs two
functions viz, the combining functions and the activation
functions.
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Fig. 1: Multiple layers of feedforward neural network

The combining function produces activation for the neuron
of the form,
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where wij
m is the weight connection between the i th

neuron of the ( )m1 th layer and the j th neuron of the

m th layer, bj
m is the threshold of the neuron and nm1 is

the number of neuron in the ( )m1 th layer. The
activation function performs a non-linear transformation to
give the output,
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where f ( ) is the non-linear transformation or activation
function. By combining equation (1) and (2) the output of a
functional unit of the neuron can be expressed as,
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The functionality of the network is determined by
specifying the strength of the connection paths, called
weights, and the threshold parameter of each neuron. The
input layer usually acts as an input data holder and
distributes inputs to the first hidden layer. The inputs then
propagate forward through the network and each neuron
computes its output according to the learning rule chosen.

3. Control Structures

The control structures used in the present work are: Direct
Inverse Control and Internal Model Control.7, 11

A.  Direct Inverse Control (DIC)

Inverse control utilizes the inverse of the system model. The
diagram below (Figure 2) is a simple example of direct
inverse control. A neural network is trained to model the
inverse of the process. When the inverse controller is
cascaded with the process the output of the combined
system will be equal to the set point.

B. Internal Model Control (IMC)

Internal Model Control is a structure that allows the error
feedback to reflect the effect of disturbance and plant
mismodeling. Internal model control based on direct inverse
control is shown in Figure 3.

A neural network model is placed in parallel with the real
system. The controller is an inverse model of the process.
The filter makes the system robust to process-model
mismatch. With the IMC scheme, the aim is to eliminate the
unknown disturbance affecting the system. The difference
between the process and the model yhat(k+1) is determined.
If the ANN model is a good approximate of the process then
the yhat(k+1) is equal to the unknown disturbance. The
signal yhat(k+1) is the information that is missing from the
NN-model and can be used to improve the control. The
yhat(k+1) signal is subtracted from the input set point
(k+1).

Fig. 2. Direct inverse control

Fig. 3. Diagram of Internal model control

4. Twin Rotor System

The Two Rotor MIMO System (TRMS)1 is a laboratory set-
up designed for control experiments. Although the dynamics
of the TRMS are simpler than those of a real helicopter,
they retain the most important helicopter features such as
couplings and strong nonlinearities.

The TRMS consists of a beam pivoted on its base in such a
way that it can rotate freely in both its horizontal and
vertical planes producing two rotating movements around
yaw and pitch axes, respectively.1 The schematic diagram of
the TRMS is shown in Figure 4. At both ends of a beam,
pivoting on its base, there are two propellers driven by DC-
motors. The articulated joint allows the beam to rotate in
such a way that its ends move on spherical surfaces. There
is a counter-weight fixed to the beam and it determines a
stable equilibrium position.

Fig. 4. Schematic diagram of TRMS

5. Modeling and Inverse Modeling Using ANN

Various modeling techniques can be used with neural
networks to identify non-linear dynamical systems. These
include state-output model, recurrent state model and non-
linear autoregressive moving average process with
exogeneous (NARMAX) input model. However, a model,
without incorporating the noise term or considering the
noise as additive at the output, namely NARX can also be
used to identify system reliably. Schematic diagram of
NARX3,4,6 is shown in Figure 5 and mathematical
expression is given below:
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Fig. 5: NARX model identification with MLP neural networks

Once the network weights and biases have been initialized,
the network is ready for training. During training the
weights and biases of the network are iteratively adjusted to
minimize the network performance function. The default
performance function for feedforward networks is mean
square error MSE - the average squared error between the
network outputs and the target outputs.

Inverse modeling is used to generate the inverse of the
process. The system output is used as an input to the
network. The ANN output is compared with the training
signal (the system input) and this error signal is used to train
the network. This training method will force the neural
network to represent the inverse of the system. The simplest
approach of inverse modeling is shown in Figure 6. The
system output is used as an input to the network. The ANN
output is compared with the training signal (the system
input) and this error signal is used to train the network. This
training method will force the neural network to represent
the inverse of the system.

Fig. 6: Structure for inverse model training

There are certain problems associated with this approach.
The TRMS is open-loop unstable, the training data would
not show the dynamics of the system as the system
moves/oscillates quickly. There may be plant-model
mismatches. The training of the ANN for an inverse model
may not yield an accurate model of the actual system which
in turn, may lead to unknown disturbances in the system.

Fig. 7: Structure for specialized inverse model training

To avoid these problems another way of training inverse
models is present in the literature, namely specialized
inverse model training.7,11 The models and plant are
connected according to Figure 7. The inverse model is
connected in series with the plant, but since usually the
internal states of the Plant are unknown and do not allow
performing the necessary calculations to report the error
(between plant output and desired output) to the output of
the inverse model, a direct model is placed in parallel with
plant. This structure is supposed to overcome the problems
mentioned for the previous type of training because the
network is trained in a situation similar to the one that the
NN will assume in a control situation.

6. Design of Neural Network Controller

The NN plant model and the NN controller (inverse plant
model) are trained off-line, using data collected from plant
operations. The direct inverse control and internal model
control are investigated in this work. In the present NN
design work, PSO training method is used.

PSO is a population-based optimization algorithm and is
initialized with a population of random solutions, called
particles and each particle in the PSO also has an associated
velocity. One of the variants of PSO algorithm, used in this
work, is stated as:9,12
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Where ω is inertia weight, 1c and 2c are positive constants,
and r and R are two random functions in the range [0,1];

 idiii xxxX ,...,, 21 represents the i-th particle;

 idiii pppP ,...,, 21 represents the best previous
position (the position giving the best fitness value) of the i-
th particle; the symbol g represents the index of the best
particle among all the particles in the population;

 idiii vvvV ,...,, 21 represents the rate of the position
change (velocity) for particle i . Equation (5) describes the
flying trajectory of a population of particles. It describes
how the velocity is dynamically updated and equation (6)
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gives the position update of the “flying” particles. The
modeling problem has been re-formulated as minimization
problem in the PSO process. This fitness function used in
this case is mean squared error (MSE). Particles having
relatively lower values of MSE will be selected as personal
bests (Pi) and particle having lowest MSE will be selected as
global best (Pg). These values will guide  other particles
towards better region in the search space. The algorithm was
run with a swarm size (number of individuals in initial
population) of 20, generated randomly. The acceleration
coefficients 1c and 2c were set at 1.5 and inertia
coefficient, ω was gradually decreased from 1.2 to 0.1 with
generation. With these parameters, PSO algorithm was run
for 500 generations.

In case of inverse modeling the same process has been used,
only the input and output data were interchanged. As shown
in Figure 2 and 3, the direct inverse controller and internal
model controller have been implemented using
Matlab/Simulink.13 This method used the past values of
input, u and output, y, the control signal required for
producing the desired output is found. The difference
between expected u and the neural model output, uN is the
error, eN which was utilized for network learning. The
input- output data obtained is divided into two parts
containing 300 data and 200 data. The first 300 data are
taken for training. Weights are initialized from input to
hidden layer & hidden to output layer. After training is
completed the remaining 200 data are taken for validation.
In this case, the NN model obtained is called inverse NN
model. The network is next validated on the remaining set
of data to evaluate the model. After suitable training model
is obtained then the network is validated using the
remaining data. This inverse model after training and
validation is taken for control. Here the inverse model itself
acts as the controller.

7. Implementation and Results

In this investigation a controller is designed using the direct
inverse control and internal model control for a TRMS.
Matlab/Simulink is used to implement the plant model,
inverse model and overall control scheme. The reference
signal and the output responses of the system for direct
inverse control and internal model control are shown in
Figure 8 and 9 respectively.

Comparing Figures 8 and 9, it can be clearly demonstrated
that the output response of the system using internal model
control is better than that using direct inverse control. As
observed, the output responses for both cases have initial
disturbances but in case of internal model control, it’s much
less than the direct inverse control. Moreover, the important
to note that the reference input and output response of
Figure 9 are overlapped on each other that clearly reveals
that the output of the system can follow the reference input
and finally settles to the desired position that results zero
steady-state error. So, it is obvious the internal model
controller stabilize the system better.

To investigate further, the unit step response of the plant
using internal model control is recorded and shown in
Figure 10. Here the simulation time is set to 10 sec. So from
the Figure 10, we can see that even though there is an
overshoot in transient response, the output finally settles and
completely follow the reference input.

Fig. 8: Reference vs the system output for Direct Inverse
Control(DIC)

Fig. 9: Reference vs the system output for Internal Model
Control(IMC)

Different time domain performance measures of output
response due to internal model control are recorded as:
settling time ≈0.7s, Rise time≈ 0.1s, Overshoot≈ 20 % and
steady state error≈ 0. All these performance measures
clearly show the effectiveness of the design controller.

Fig. 10: Reference vs the system output for IMC(simulation
time=10s)
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8. Discussion and Conclusion

Supervised learning uses an existing controller or human
feedback in training the neural network. In order to train the
neural network to imitate an existing controller a vector of
inputs and control targets from the controller must be
collected. With supervised control, a neural network could
be trained to imitate a robust controller. The robust
controller can operate correctly, if the process operates
around a certain point. And in case of direct inverse control,
it is simple but this approach has some drawbacks.11

a) The learning procedure is not goal directed. As the model
is not trained in the same situation in which it will be used
after training, the structure of training is said not to be goal
directed.

b)  In situations where the mapping is not 1:1, an incorrect
inverse can be obtained.

So the advantage of using direct inverse control (DIC) over
supervised control is that inverse control does not require an
existing controller in training

Two proposed control strategies; direct inverse control
(DIC) and internal model control (IMC) have been
implemented in this paper. Although both DIC and IMC
strategies achieved interesting results, the performance of
IMC is better as far as input tracking is concerned.
Moreover, the output of the system settles to the desired
value that yields a zero steady state error. On the other hand,
in case of DIC, there is a constant steady state error that
indicated the system settles to a different value rather than
the desired level. Both the control strategies have an
interesting side:

a) DIC is relatively simpler and easier to implement.

b) IMC forms a more robust control loop an thus presents
better results from mean squared error point of view.

The neuro-controller operates similarly to the robust
controller but can also adapt if any disturbance occurs in the
system. If the inverse model is very accurate, the
nonlinearities in the ANN will cancel out the nonlinearities
in the process. The advantage of using inverse control over
supervised control is that inverse control does not require an
existing controller in training. The problems associated with
direct inverse control such as plant-model mismatch, etc are
reduced using IMC.
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