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ABSTRACT 

The uncertainty in extracting temperature distributions using Brillouin optical time domain analysis (BOTDA) 

sensors depends ultimately on the signal-to-noise ratio (SNR) of the BOTDA-measured Brillouin gain spectra (BGSs) 

along the fiber. The real-world applications of BOTDA sensors also require fast extraction of temperature 

distributions from the measured BGSs. To improve the SNR of the measured BGSs, 2D discrete wavelet transform 

(DWT) based wavelet denoising of BGSs (WDB) is used in this study. The denoised BGSs are then processed by using 

WDB-based artificial neural networks (WNNs) for the fast and accurate extraction of temperature distributions 

along a 38.2 km long fiber. The performances of WNNs are investigated in detail for the BGSs acquired from 

BOTDA experiment at ten different frequency steps and ten different numbers of trace averaging. The effect of 

WDB as well as WNN on the spatial resolution of the sensors is also analyzed. Moreover, the performances of using 

WNNs in extracting temperature distributions are compared with that of widely-used nonlinear least-squares fitting 

(NLF). The experimental results manifest that WNNs can offer much better uncertainty and significantly faster 

temperature extraction without sacrificing the spatial resolution as compared to NLF. Thus, the proposed WNNs can 

be effective tools for the fast and accurate extraction of temperature distributions in BOTDA sensors.  
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1. Introduction 

Distributed temperature monitoring over a conventional 

optical fiber by using Brillouin optical time domain analysis 

(BOTDA) sensors have attained substantial research 

interest in recent decades [1-4]. The use of BOTDA sensors 

enables the precise monitoring of temperature distributions 

with high spatial resolution [3-5]. In conventional BOTDA 

sensors, pump and probe waves are initiated at two opposite 

ends of an optical fiber. These two counter-propagating 

waves interact within the fiber medium and power supplied 

by the pump wave amplifies the probe wave. Such 

amplification process along the fiber is signalized as local 

Brillouin gain spectrum (BGS). In a local BGS, peak gain 

arises whenever the pump-probe frequency offset becomes 

identical to the local Brillouin frequency shift (BFS) of the 

fiber [1, 6]. As a result, the BOTDA traces collected along 

the fiber by gradually scanning the pump-probe frequency 

offsets adjacent to the local BFSs are used to construct the 

BGSs along the fiber [2, 4]. In reality, thousands of traces 

are obtained at a specified pump-probe frequency offset 

which are then averaged to collect one particular trace at 

that frequency offset so as to improve the trace-SNR to a 

desired level [6, 7]. The most notable feature of BOTDA 

sensors is that the BFSs of the BGSs along the fiber vary 

linearly with local temperatures [2, 3].  

The BGS acquired from BOTDA experiment is ideally 

modelled by Lorentzian profile and nonlinear least-squares 

fitting (NLS) is usually employed to resolve the BFSs of the 

BGSs [8, 9]. Then, the linear BFS-temperature 

characteristics of the fiber are utilized for extracting the 

temperature distribution from the BFSs along the fiber [2, 

8]. However, the uncertainty in extracting temperature 

distributions using BOTDA sensors is eventually subject to 

the experimental conditions and depends basically on the 

frequency step (υs) used to scan the pump-probe frequency 

offsets and number of trace averaging (Ta) adopted to 

collect each BOTDA trace [6, 8]. To reduce the uncertainty, 

smaller υs and higher Ta need to be adopted in BOTDA 

experiment both of which increases the acquisition time of 

BGSs significantly, especially for a several kilometres long 

fiber. Moreover, the NLF requires iterative optimization 

process and thus takes relatively longer runtime [2] for 

extracting temperature distributions from the BGSs 

acquired from BOTDA experiment.  

In recent years, many techniques alternative to the 

adaptation of high number of trace averaging have been 

studied to improve the SNR of the BOTDA-measured 

BGSs. Such techniques can be broadly classified into two 

major categories. The techniques belonging to the first 

category integrate several techniques, such as optical pulse 

coding [10-12] and distributed Raman amplification [5, 13] 

with the conventional BOTDA sensor. Consequently, the 

experimental setup of such sensors becomes complex and 

expensive. In the techniques belonging to the other 

category, the noisy measured BGSs obtained from BOTDA 

experiment adopting lower Ta (i.e., lower SNR) are 

denoised effectively by using various signal denoising 

algorithms, such as wavelet transform [14-16], non-local 

means [16, 17] and anisotropic diffusion [18].  

The real-world applications of BOTDA sensors include 

remote monitoring of fire occurrences in long tunnels, 

underground mines and large civil structures. Such 

applications require fast and accurate extraction of 

temperature distributions along the fiber. For using iterative 

optimization process, the BGSs processing time of NLF is 

quite long. The integration of WDB prior to NLF also 
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includes extra time in the BGSs processing. Consequently, 

the use of WNNs is proposed and demonstrated in this 

study to reduce the uncertainty as well as the BGSs 

processing time of BOTDA sensors. The performances of 

the proposed WNNs in extracting temperature distributions 

from the BOTDA-measured BGSs over a 38.2 km long 

fiber adopting ten different frequency steps as well as ten 

different numbers of trace averaging are also analyzed in 

detail. 

2. Methods 

2.1 BOTDA Setup and the Acquisition of BGSs 

The BOTDA setup utilized for the acquisition of BGSs 

along the fiber is shown in Fig. 1. The laser used in the 

setup is tuned at 1550 nm to deliver continuous-wave (CW) 

light in the lower and upper branches via the coupler. The 

states of polarization of light waves through these branches 

are maintained by two polarization controllers PC1 and 

PC2. 

 
Fig. 1. BOTDA experimental setup for the acquisition of BGSs. 

The pump-pulses in the upper branch are generated by 

modulating the CW light with the help of an electro-optic 

modulator (EOM1) which is driven by a pulse pattern 

generator (PPG). The peak pump power is boosted up by 

using the erbium-doped fiber amplifier (EDFA). The 

amplified spontaneous emission (ASE) noise is then filtered 

out by using the band pass filter (BPF). After the states of 

polarization being randomized by a polarization scrambler 

(PS) in the upper branch, the pump-pulses finally enter 

through the near end of the fiber.  

The double-sideband suppressed-carrier (DSB-SC) probe 

wave in the lower branch is generated by modulating the 

CW light via an additional electro-optic modulator (EOM2) 

which is driven by a radio frequency generator (RFG). The 

power of the probe wave is adjusted by means of a variable 

optical attenuator (VOA). Finally, the isolator in the lower 

branch allows the propagation of probe signal through the 

far end of the fiber but stop the propagation of signal from 

the opposite direction. In this experimental setup, the power 

from the pump-pulses is transferred to the oppositely 

directed probe signal. Consequently, the DSB-SC probe 

wave gets amplified. Finally, the fiber Bragg grating (FBG) 

filter blocks the undesired upper-sideband of DSB-SC 

probe wave and the lower-sideband is detected by the 

photodetector (PD).  

The output signal from the PD is scanned step-by-step at a 

given frequency step (υs) and time-domain traces along the 

fiber are obtained by adopting a given number of trace 

averaging (Ta). The width of the pump-pulses during the 

BOTDA experiment is set to be 20 ns which ensures 2 m 

spatial resolution of the sensor. In this demonstration, the 

last ~0.6 km segment of the 38.2 km long fiber is heated 

inside a constant-temperature oven keeping the other part 

outside at room temperature. The distributions of BGSs are 

obtained along the whole span of the fiber at a sampling 

rate of 250 Mega-baud that corresponds to 0.4 m along the 

fiber. The oven temperature is varied from 30 ºC to 70 ºC 

with a step of 10 ºC. The number of trace averaging (Ta) 

adopted is varied from Ta = 100 to 1000 at a step of 100. 

The BGSs are obtained for a frequency range from 10.76 

GHz to 11.01 GHz with a frequency step of υs = 1 MHz. 

The measured BGSs obtained using υs = 1 MHz at five 

different temperatures and ten different Ta are under-

sampled to get BGSs at nine other larger frequency steps of 

υs = 2 MHz to 10 MHz at a step of 1 MHz. 

2.2 Operating Principle 

2.2.1 Wavelet Denoising of BGSs (WDB) Using 2D DWT 

In recent years, wavelet transform based signal denoising 

techniques have attracted great attention due to its distinct 

capability of multi-resolution analysis and time-frequency 

representation of signals and images [19 - 22]. In DWT, the 

scaling function and the corresponding wavelet function are 

given [14] respectively by 
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where, j and k in Eq. (1) and Eq. (2) are responsible for the 

scaling and shifting of the functions. In 2D DWT, one 2D 

scaling function and three 2D wavelet functions are 

involved. Each of these 2D functions are formed by using 

1D scaling function ϕ and corresponding wavelet function 

ψ as given respectively [20, 23] by 
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where p and q are the coordinates of any 2D function A0 (p, 

q) and ϕA, ψH, ψV and ψD are associated with the 

approximation (A), horizontal detail (HD), vertical detail 

(VD) and diagonal detail (DD) respectively. The wavelet 

coefficients of A, HD, VD and DD at level d are now 

obtained simply by performing the inner products as given 

[23] respectively by 
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In Eq. (7) – Eq. (10), Ad are the approximation coefficients 

obtained in dth level and for d = 0, A0 is the 2D input 
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function. It is noteworthy that 2D DWT can be efficiently 

implemented using filter bank structures incorporating low-

pass and high-pass filers [20, 24]. In such implementation, 

1D DWT is successively employed to each row and then to 

each column of the 2D function. 

In this work, the noisy measured BGSs acquired along the 

fiber by utilizing the BOTDA sensor shown in Fig. 1 is 

used as the 2D function A0, on which the wavelet 

denoising of BGSs (WDB) using 2D DWT is performed. 

Such WDB consists of three sequential steps, i.e., 

forward-DWT, level-dependent thresholding and inverse-

DWT. In forward-DWT, the decomposition filter bank 

shown in Fig. 2(a) is used to decompose A0. In the first 

level decomposition (i.e., d = 1) of A0, four sub bands are 

obtained comprising wavelet coefficients of 

approximation (A1), horizontal detail (HD1), vertical detail 

(VD1) and diagonal detail (DD1). For decomposing A0 at a 

higher level (e.g., d > 1), only the approximation 

coefficients (Ad) obtained from dth level is repetitively 

decomposed into another four new sub bands as shown in 

Fig. 2(a) to obtain multi-resolution analysis of BGSs. It is 

notable that the larger coefficients in the approximation 

sub band typically contain main features of the BGSs but 

the smaller coefficients in each of the detail sub bands 

mostly contain noise features [15, 20].  

 
Fig. 2. Filter bank realization of 2D DWT for the (a) 

decomposition and (b) reconstruction of BGSs using low pass 

decomposition (LPD) filter, high pass decomposition (HPD) filter, 

low pass reconstruction (LPR) filter, high pass reconstruction 

(HPR) filter, down-sampler (↓) and up-sampler (↑). 

Next, level-dependent thresholds for all of the detail sub 

bands are first computed based on Birgé-Massart strategy 

[20, 25] and then soft thresholding [22] is accomplished 

only on the detail coefficients keeping the approximation 

coefficients unchanged. Finally, inverse-DWT is performed 

on the unchanged approximation sub band and thresholded 

detail sub bands via the reconstruction filter bank shown in 

Fig. 2(b) to reconstruct the denoised BGSs. To decompose 

and reconstruct the BGSs, „symlet12‟ mother wavelet 

function is used. The coefficients of the decomposition and 

reconstruction filters used in the implementation of filter 

banks in Fig. 2 are shown in Fig. 3.  

 
Fig. 3. Filter coefficients of (a) low pass decomposition (LPD), (b) 

high pass decomposition (HPD), (c) low pass reconstruction 

(LPR), and (d) high pass reconstruction (HPR) filters. 

A visual illustration of level 2 decomposition (i.e., d = 2) of 

typical noisy measured BGSs into different sub bands are 

shown in Fig. 4. As shown in Fig. 4, the noisy BGSs are 

first decomposed with d = 1 to obtain one approximation 

sub band (A1) and three detail sub bands, such as horizontal 

(HD1), vertical (VD1) and diagonal (DD1). For d = 2, A1 

obtained with d = 1 is decomposed again which gives 

another four new sub bands, i.e., A2, HD2, VD2 and DD2 . 

 
Fig. 4. The diagram depicting the noisy BGSs, decomposed noisy 

BGSs and reconstructed denoised BGSs with level 2 

decomposition in WDB. 

The wavelet coefficients in all of the six detail sub bands in 

Fig. 4 are then soft thresholded but that in A2 remain 

unchanged. Finally, the denoised BGSs in Fig. 4 are 

reconstructed by applying inverse-DWT to the unchanged 

approximation coefficients and thresholded detail 

coefficients.  

2.2.2 WDB Based Artificial Neural Networks (WNNs) 

An ANN is a simplified connectionist system that is widely 

used for modeling highly nonlinear mapping problems [26 -
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29]. Once it is trained with known input-output pairs, it can 

effectively approximate the outputs for unknown set of 

inputs. In this study, the extraction of temperature 

distributions from the BOTDA-measured noisy BGSs 

employing WNN involves two stages. The noisy BGSs are 

first denoised by using WDB and then ANN is utilized for 

extracting temperature distributions from such denoised 

BGSs. To perform this, ten WNNs are trained separately 

each suitable to extract temperature distributions from the 

BGSs acquired at ten different frequency steps of υs = 1 MHz 

to 10 MHz. To train the WNNs, the known BGS-

Temperature (BGS-T) pairs are simulated in view of the 

BFS-temperature characteristics (i.e., slope of ~0.97497 

MHz/ºC and intercept of ~10.83415 GHz) of the used fiber 

[2] and experimental conditions (e.g., pump-pulse width and 

number of trace averaging, Ta) adopted in BOTDA 

experiment shown in Fig. 1. In theory, the BGSs acquired 

from BOTDA experiment are ideally replicated by 

Lorentzian profile [9, 27]. Thus, the training BGSs in BGS-T 

pairs are also simulated with Lorentzian profile defined by 
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where, gB, υB and ΔυB are the peak Brillouin gain, BFS and 

line width of each BGS, respectively. In the simulation of 

training BGSs using Eq. (11), the peak gain of each BGS is 

set to gB = 1 and the frequency range is fixed from υ = 

10.76 GHz to υ = 11.01 GHz which is the same as used in 

the acquisition of BGSs from the BOTDA experiment. 

The WNNs are trained in this study to make them suitable 

for providing temperature output within the range from 0 ºC 

to 100 ºC. At a step of 1 ºC within this range, the BFS-

temperature characteristics of the fiber give the BFSs of a 

total of 101 BGSs in the range from 10.83415 GHz to 

10.93165 GHz with a step of 0.97497 MHz. For adopting 

20 ns pump-pulses in BOTDA experimental setup, the line 

widths of measured BGSs are found to be varied within 50 

MHz to 60 MHz due to several factors [2, 8]. To minimize 

the effect of this variation on the performance of WNNs, 

the line widths of each of the 101 BGSs are also varied 

within 50 MHz to 60 MHz at 1 MHz step by keeping their 

BFSs unchanged. Consequently, a total of 101×11 ideal 

BGSs are simulated by using Eq. (11) to accommodate the 

required temperature and line width ranges. The measured 

BGSs acquired from BOTDA-experimental setup are noisy 

and the noise level of the BGSs varies with distance along 

the fiber. This level of noise also depends on the number of 

trace averaging (Ta) used in BOTDA experiment [6, 7]. For 

the proper matching of the training BGSs with the noisy 

measured BGSs, the simulated clean BGSs are 

contaminated by adding adaptive-white-Gaussian-noise 

(AWGN) with varying SNR ranging from 12 dB to 25 dB 

at a step of 1 dB. Finally, a total of (101×11×14) 15554 

BGS-T pairs are simulated for training the WNNs. Within 

the frequency range from υ = 10.76 GHz to υ = 11.01 GHz, 

the noisy training BGSs suitable to train ten WNNs are 

simulated by adopting ten different frequency steps (υs). It 

is worth to mention that the mapping capability of WNNs is 

subject to the similarities between the BGSs used in 

training and testing phases. Since the measured BGSs are 

denoised by applying WDB before being fed to the trained 

WNNs for extracting temperature distributions in the 

testing phase, the noisy training BGSs obtained at each of 

the ten υs are also denoised by using WDB. The denoised 

training BGSs are then normalized within the range from 0 

to 1 [27, 28]. Finally, each set of BGS-T pairs simulated at 

a particular υs is used to train each of the ten WNNs to 

make them suitable for extracting temperature distributions 

from the BGSs acquired at that υs.  

The pyramid-shaped architecture of each of the ten WNNs 

consists of two hidden layers as shown in Fig. 5. The 

number of neurons in the input layer of each WNN in Fig. 5 

at a particular υs is that of sample points on the BGSs at that 

υs. To provide temperature output, there is only one neuron 

in the output layer of each WNN. For simplicity, the first 

and second hidden layers of each WNN contain 

approximately half and one-quarter of neurons used in the 

input layer respectively. Each of the ten different WNNs at 

ten different υs is trained separately using corresponding 

BGS-T pairs via back propagation algorithm [27 - 29]. 

Once the training processes of WNNs are accomplished, 

each of the ten trained and optimized WNNs is utilized 

directly to extract temperature distributions from the 

denoised BGSs attained at each of the ten different 

frequency steps. 

 

Fig. 5. A typical two-hidden-layer WNN used to extract 

temperature distributions from the denoised BGSs. 

2.2.3 Nonlinear Least-Squares Fitting (NLF) 

To compare the performance of WNN with that of NLF, the 

distributions of temperature from the BOTDA-measured 

BGSs along the fiber are also determined using NLF. For 

this, each measured BGS along the fiber is fitted 

individually by the Lorentzian profile defined in Eq. (11) 

and the BFS of such BGS is supposed to be equal to the 

fitted υB. The BFS distributions along the fiber are then 

transformed to temperature distributions utilizing the linear 

BFS-temperature characteristics of the fiber. A detailed 

description of the NLF is available in Ref. [14, 27].  

3. Results and Discussion 

3.1 Performance Analysis of WDB 

In this study, the BGSs along the full length of a 38.2 km 

fiber are obtained by heating its last ~0.6 km segment with 

a constant-temperature oven each time at 30 ºC, 40 ºC, 50 

ºC, 60 ºC and 70 ºC. For this five oven temperatures, the 
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BGSs are obtained using frequency steps of υs = 1 MHz to 

υs = 10 MHz at 1 MHz step with varying Ta starting from Ta 

= 100 and ending to Ta = 1000 with an increment of 100. As 

an example, the distribution of BOTDA-measured BGSs 

obtained along the 38.2 km long fiber for oven temperature 

of 70 ºC at υs = 1 MHz and Ta = 500 is shown in Fig. 6.  

 
Fig. 6. Distribution of measured BGSs obtained at υs = 1 MHz and 

Ta = 500 for the last ~0.6 km of the 38.2 km fiber heated at 70 ºC. 

The measured BGSs acquired from BOTDA experiment 

with each of these five temperatures, ten υs and ten Ta are 

denoised separately by using WDB. In WDB, five different 

levels (i.e., d = 1 to 5) of BGSs decomposition and 

reconstruction are adopted. The denoised BGSs obtained 

after applying WDB with d = 2 to the measured BGSs in 

Fig. 6 are shown in Fig. 7. 

 
Fig. 7. Distribution of denoised BGSs after applying WDB with d 

= 2 to the measured BGSs obtained at υs = 1 MHz and Ta = 500 for 

the last ~0.6 km of the 38.2 km fiber heated at 70 ºC. 

It is observed that the noise level of the denoised BGSs 

shown in Fig. 7 is much lower than that of the measured 

BGSs shown in Fig. 6. To observe the denoising 

performance of WDB more clearly, the measured trace at 

10.86 GHz in Fig. 6 and the corresponding denoised trace 

in Fig. 7 are plotted in Fig. 8. It is easy to notice in Fig. 8 

that WDB can reduce noise from the measured trace 

significantly. In fact, the reduction of noise from the 

measured traces is associated with the reduction of noise 

from measured BGSs. As a result, WDB also helps to 

enhance the SNR of the measured BGSs accordingly. 

 
Fig. 8. The measured trace and the corresponding denoised trace 

after applying WDB with d = 2 to the BGSs obtained at υs = 1 

MHz and Ta = 500 for the last ~0.6 km of the 38.2 km fiber heated 

at 70 ºC. 

The results presented in Fig. 7 and Fig. 8 visually illustrate 

the denoising performance of level 2 (i.e., d = 2) WDB. In 

practice, WDB can be applied with different levels of BGSs 

decomposition and its performance can be evaluated in term 

of SNR. For this, the SNRs of the measured and denoised 

traces along the last 0.5 km segment of the fiber are 

computed where the SNRs are reasonably lowest. Since the 

last 0.5 km segment of the fiber is heated each time at one 

of the five different temperatures, their peak gain 

frequencies are also different and vary linearly with 

temperature [2, 27]. Thus, the traces for calculating SNRs at 

five different temperatures are selected at five different 

frequencies corresponding to their peak gain frequencies. 

Then the SNR of each trace at different temperatures is 

calculated to be the ratio of the average of the trace 

amplitudes along the last 0.5 km fiber to the standard 

deviation of such trace amplitudes [16]. At a particular Ta 

and d, five nearly equal SNRs are computed for five 

different temperatures which are then averaged to 

approximate the SNR at that Ta and d. The variation of 

SNRs of measured traces without applying WDB and that 

of denoised traces obtained after applying WDB is shown 

in Fig. 9.  

 
Fig. 9. Variation of SNRs computed along the last 0.5 km segment 

of the 38.2 km long fiber. 

It is seen in Fig. 9 that the SNRs of the measured and 

denoised traces increase with Ta. This is reasonable because 

averaging of more traces also helps to improve the trace-
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SNR. It is also seen in Fig. 9 that the SNRs of the denoised 

traces obtained after applying WDB with different d are 

also higher than that without applying WDB at each of the 

ten different Ta. For instant, the SNR for the measured trace 

(i.e., without WDB) at Ta = 500 is 11.08 dB which improves 

gradually by 2.75 dB, 5.63 dB, 7.02 dB, 8.21 dB and 8.63 

dB for applying WDB with d = 1, 2, 3, 4 and 5 respectively. 

This means that the use of WDB with higher level of BGSs 

decomposition also provides higher improvement of SNR.   

The results in Fig. 9 indicate that WDB with higher level 

(i.e., higher d) of BGSs decomposition offers better SNR. 

However, these higher SNRs are attained by thresholding 

high frequency components of BGSs in WDB. Therefore, 

the denoised traces turn to be over-smoothed. This becomes 

more severe along the fiber segment where drastic 

transition of traces takes place for sudden change in 

temperature [14, 24]. As a result, WDB with higher d also 

deteriorates the spatial resolution of the sensor. To verify 

this effect, the measured trace at 10.86 GHz along the fiber 

for adopting maximum oven temperature of 70 ºC in this 

work is considered. The measured trace is denoised by 

applying WDB with five different levels of BGSs 

decomposition. The measured and denoised traces along the 

fiber segment from 37.613 km to 37.619 km where the 

temperature changes suddenly from room temperature to 70 

ºC are plotted in Fig. 10.  

 
Fig. 10. The measured trace at 10.86 GHz and its denoised traces 

along the fiber segment where temperature changes suddenly from 

room temperature to 70 ºC. 

It is observed in Fig. 10 that the spatial resolution of the 

sensor degrades gradually if WDB with higher d is used. 

The results in Fig. 10 also confirm that the traces denoised 

by applying WDB with d = 1 and 2 can conserve the spatial 

resolution of the sensor which is 2 m in this demonstration. 

However, it is also necessary to sacrifice the spatial 

resolution of the sensor if WDB with d > 2 is applied.  

3.2 Performance Analysis of WNNs 

For extracting temperature distributions by employing 

WNNs, ten WNNs are trained separately. The measured 

BGSs are first denoised by using WDB with d = 2 and these 

denoised BGSs are then normalized within the range from 0 

to 1. Such BGSs are finally supplied to the trained WNNs 

for directly extracting the temperature distributions. It is 

worth to mention that each of the ten WNNs trained for a 

particular υs involves in the temperature distribution 

extraction from the BGSs acquired at that υs adopting all of 

the ten different Ta and five different oven temperatures. 

For instance, the distributions of temperature along the 38.2 

km long fiber extracted by WNN trained for υs =1 MHz 

from the measured BGSs obtained at υs =1 MHz and Ta = 

1000 with the last ~0.6 km fiber segment heated at five 

different oven temperatures are shown in Fig. 11. For 

comparison, the distributions of temperature extracted by 

NLF from the measured BGSs obtained under same 

experimental conditions are also shown in Fig. 12. 

 
Fig. 11. WNN extracted temperature distributions from the 

measured BGSs along the 38.2 km fiber acquired at υs = 1 MHz, 

Ta = 1000 with the last ~0.6 km fiber segment heated at five 

different temperatures. Inset: temperature distributions along the 

last 1 km fiber segment. 

 
Fig. 12. NLF extracted temperature distributions from the 

measured BGSs along the 38.2 km fiber acquired at υs = 1 MHz, 

Ta = 1000 with the last ~0.6 km fiber segment heated at five 

different temperatures. Inset: temperature distributions along the 

last 1 km fiber segment. 

It is easily seen in Fig. 11 that WNN is able to extract 

temperature distributions along the 38.2 km long fiber 

satisfactorily. The temperature distributions extracted by 

WNN in Fig. 11 also exhibit much reduced fluctuation (i.e., 

lower uncertainty) as compared to that extracted by NLF in 

Fig. 12. It is also seen in Fig. 11 that WNN extracted 

temperature distributions along the last ~0.6 km fiber 

segment heated at five different oven temperatures are very 

consistent. It is noteworthy that the room temperature 

external to the oven during the experiment is not maintained 

exactly at a constant level. As a result, the temperature 
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distributions along the fiber segment that remains external to 

the oven also fluctuate slightly over time.   

In this study, the effect of levels of BGSs decomposition (d) 

in WDB on the spatial resolution of the sensor is also 

verified for using WNN. For comparing the effect with the 

results shown in Fig. 10, the measured BGSs obtained for 

70 ºC at υs = 1 MHz and Ta = 500 are denoised by using 

WDB with five different d. The WNN trained for υs =1 

MHz is then used to extract temperature distributions. To 

observe the effect clearly, the distributions of temperature 

along the fiber segment from 37.613 km to 37.619 km 

where the temperature suddenly changes from room 

temperature to 70 ºC are plotted in Fig. 13. 

 
Fig. 13. Temperature distributions along the fiber segment where 

temperature changes suddenly from room temperature to 70 ºC. 

Similar to the results observed from denoised traces in 

Fig. 10, it is also observed from the temperature 

distributions provided by WNN in Fig. 13 that WDB with 

maximum decomposition level of d = 2 can only preserve 

the 2 m spatial resolution of the sensor. If WDB is applied 

with d > 2, the spatial resolution of the sensors requires to 

be sacrificed. Consequently, the performances of WNNs 

in extracting temperature distributions from the BGSs 

denoised by using WDB only with d = 2 are analyzed 

next. 

The results shown in Fig. 11 and Fig. 12 reveal that the 

temperature distributions extracted by WNN at all of the 

five different oven temperatures provide much lower 

uncertainties as compared to that extracted by NLF for the 

BGSs obtained using υs = 1 MHz, Ta = 1000. To compare 

the uncertainties provided by WNN and NLF at each υs and 

Ta, the last 0.5 km from 37.7 km to 38.2 km fiber segment 

heated inside the oven is considered. The uncertainty 

provided by WNN or NLF is then computed to be the 

standard deviation of temperatures [2, 6] along this fiber 

segment extracted by WNN or NLF respectively. At a 

particular υs and Ta, WNN provides five nearly-equal 

uncertainties for each of the five different temperatures. 

These nearly-equal uncertainties are then averaged to 

estimate the uncertainty provided by WNN at that υs and Ta. 

Similarly, the uncertainty provided by NLF is also obtained 

at a particular υs and Ta. The uncertainties offered by WNN 

and NLF for all υs and Ta are plotted in Fig. 14.  

 
Fig. 14. Uncertainties in extracting temperature distributions. 

It is noticed in Fig. 14 that uncertainties provided by both of 

these two methods increase gradually if BGSs along the fiber 

are acquired at higher frequency steps (i.e., fewer sample 

points on BGSs) and lower numbers of trace averaging (i.e., 

lower SNR). It is also clear in Fig. 14 that the uncertainty 

provided by WNN at each υs and Ta is much smaller than that 

provided by NLF. Thus, WNN can significantly improve the 

uncertainty of BOTDA sensor in extracting temperature 

distributions along the fiber. For instances, the uncertainties 

in Fig. 14 using NLF at Ta = 100 for υs of 1 MHz, 5 MHz and 

10 MHz are 1.28 ºC, 2.97 ºC and 4.15 ºC respectively which 

have been reduced to 0.83 ºC, 1.29 ºC and 2.05 ºC 

respectively for using WNN. In Fig. 14, NLF and WNN 

provide lowest uncertainties of 0.58 ºC and 0.38 ºC 

respectively at υs = 1 MHz and Ta = 1000 in this study. 

However, WNN provides uncertainties of 0.63 ºC at υs = 1 

MHz and Ta = 300; 0.61 ºC at υs = 4 MHz and Ta = 1000; and 

0.56 ºC at υs = 2 MHz and Ta = 600 which are comparable to 

that of 0.58 ºC provided by NLF at υs = 1 MHz and Ta = 

1000. Consequently, the uncertainty provided by NLF at υs = 

1 MHz and Ta = 1000 is comparable to that offered by 

WNNs with either ~3.33 times less Ta, ~4 times more υs or 

1.67 time less Ta and ~2 time more υs. This implies that 

WNN offers significantly faster acquisition of BGSs along 

the fiber from BOTDA experiment as compared to NLF but 

can achieve comparable uncertainty in extracting temperature 

distributions. 

 
Fig. 15.  Variation of uncertainty ratio in extracting temperature 

distributions for using NLF to that for using WNN.  

Next, the performance of WNN is compared with that of 

NLF in term of ratio of uncertainties. For this, the 
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uncertainty provided by NLF at each υs and Ta is divided by 

that provided by WNN. The results are shown in Fig. 15 

where a ratio greater than 1 means lower uncertainty (i.e., 

better performance) for using WNN compared to that for 

using NLF. 

The results shown in Fig. 15 confirm that the uncertainty 

given by WNN at each υs and Ta is ~2 times lower than that 

given by NLF, especially at higher υs and lower Ta. For 

instance, uncertainty ratio of NLF to WNN at υs = 10 MHz 

and Ta = 100 is 2.03, i.e., uncertainty provided by WNN is 

2.03 times lower than that provided NLF. However, the 

uncertainty ratio decreases a little for the BGSs along the 

fiber obtained at lower υs and higher Ta as also observed in 

Fig. 15. For example, uncertainty ratios at υs = 5 MHz are 

2.31, 1.86 and 1.85 for Ta of 100, 500 and 1000 respectively 

while that at Ta = 500 are 1.54, 1.86 and 2.06 for υs of 1 

MHz, 5 MHz and 10 MHz respectively. It should be noted 

that the average uncertainty ratio in Fig. 15 is ~1.84. This 

implies that uncertainty for using WNN is, on an average, 

~1.84 times lower than that for using NLF. 

Finally, the runtimes of trained WNN and NLF in 

extracting distributions of temperature from the BGSs along 

the fiber are compared and analyzed. For this comparison, 

the runtimes required by WNN and NLF to extract such 

distributions from the BGSs acquired at each υs and Ta for 

each of the five different temperatures are determined 

individually. The runtimes of WNN or NLF at each υs and 

Ta are then determined to be the average of runtimes 

required for these five temperatures for using WNN or NLF 

respectively. It is worth to mention that the runtime 

determined for WNNs at each υs and Ta incorporates the 

runtimes required by WDB to denoise the measured BGSs 

as well as that required by WNN to extract temperature 

distributions from the denoised BGSs. To compare the 

runtimes of WNN and NLF, the runtime ratio of NLF to 

WNN is computed by dividing the runtimes of NLF with 

that of WNN at each υs and Ta. The results are plotted in 

Fig. 16. 

 
Fig. 16. Variation of runtime ratio in extracting temperature 

distributions for using NLF to that for using WNN.  

The results in Fig, 16 clearly reveal that runtime ratio of 

NLF to WNN is much larger than 1 (e.g., ranges from ~5.38 

to 30.94) at different υs and Ta. Thus, the extraction of 

temperature distributions from BGSs along the fiber using 

WNN requires much shorter runtimes as compared to NLF. 

It is also seen in Fig. 16 that the runtime ratio for the BGSs 

obtained a particular υs is almost the same and does not 

vary significantly with Ta. However, the runtime ratio of 

NLF to WNN increases rapidly if larger υs is adopted in 

BOTDA experiment to acquire the BGSs along the fiber. 

For instances, the runtime ratios in Fig. 16 at Ta = 500 are 

5.40, 13.67, 23.55 and 29.72 for υs of 1 MHz, 3 MHz, 6 

MHz and 10 MHz, respectively. This implies that 

temperature distribution extraction along the fiber from the 

BGSs acquired from BOTDA experiment at frequency 

steps of 1 MHz, 3 MHz, 6 MHz and 10 MHz are also 5.40, 

13.67, 23.55 and 29.72 times faster as compared to NLF. 

The larger runtime ratio of NLF to WNN is due to the fact 

that NLF optimizes the model parameters iteratively and 

thus requires relatively longer runtime [14, 27]. On the 

other hand, the testing phase of a trained WNN is very 

straightforward and thus requires relatively shorter runtime 

[26, 27] as compared to NLF for temperature distribution 

extraction from the BGSs along the fiber.     

4. Conclusions 

In this paper, the use of WDB based ANNs (WNNs) is 

proposed and experimentally demonstrated for the fast and 

accurate extraction of temperature distributions along a 38.2 

km fiber. The training of WNNs with AWGN added BGSs 

possessing variable linewidths makes the proposed method 

more pragmatic. The proposed WNNs can be effectively 

applied to process the BGSs acquired from BOTDA 

experiment with 20 ns pump-pulses for extracting 

temperature distributions within the range from 0 ºC to 100 

ºC. However, the training process of WNNs with simulated 

BGSs can easily be customized for other experimental 

conditions. In this study, the effect of using different levels 

of BGSs decomposition in WDB is analyzed in detail and 

level 2 BGSs decomposition is used safely in WNNs to 

retain the 2 m spatial resolution of the sensor. The 

performances of WNNs are also compared with that of 

traditional NLF for the BGSs acquired at ten different 

frequency steps and ten different numbers of trace 

averaging. The results signify that the uncertainties in 

extracting temperature distributions provided by WNNs are 

almost half as compared to that provided by NLF. 

Moreover, the extraction of temperature distributions by 

using WNN is several times faster than that by using NLF. 

Therefore, the fast and accurate extraction of temperature 

distributions by using the proposed WNN can be an 

attractive alternative to make BOTDA sensors more 

suitable for real-world applications. 
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