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1. Introduction

Belief propagation algorithms, originally invented by Pearl, 
have been used to solve constraint reasoning problems in a 
wide range of application domains including error correcting 
codes, speech recognition, image understanding and multi-
agent coordination and constraint recommender systems [1, 
2, 3, 4], etc. In general, the belief propagation algorithms, 
also known as message passing algorithms, deal with the 
constraint reasoning problems by performing inference 
on graphical models that have been used to represent such 
problems [5]. The graphical models, such as Bayesian 

graphs, have been used with the same amount of success to 
articulate problems with deterministic behaviour, as well as in 
situations involving probability distributions or uncertainty 
[6, 7, 8]. The former is typically named as the deterministic 
graphical models and the latter as the probabilistic graphical 
models.

It is worth mentioning that the initial intention was to employ 
the belief propagation algorithms only for graphical models 
without loops or cycles for which they are guaranteed 
to provide an exact or optimal solution. Nevertheless, 
enough empirical evidences have been found showing the 

loopy graphical models [9, 10, 11]. Additionally, one very 
important feature of the message passing algorithms have 

famously shown that any algorithm of this type can be seen 
as a special case of Generalized Distributive Law (GDL) 

two semiring operators, “max” and “product”, are used to 
form one of the most studied message passing algorithm 
named Max-Product.

The Max-Product algorithm has received particular attention 
amongst all of the existing message passing algorithms. 
Similar to other such algorithms, Max-Product performs 
inference on a graphical model by either following a 
synchronous or an asynchronous message update protocol 
[6, 13]. The messages here are generated using the GDL 
framework that has an axiomatic tendency of computational 

use of constrained computational and communication 

complex utility relationships (generated from the constraints) 
through the graph. In any case, all the nodes of a graphical 
model continuously generate and exchange messages 
towards completing the inference process. During the 
process, the semiring operator “max” serves as the summary 
operator for the Max-Product algorithm. Moreover, nodes 
in this particular algorithm (and other similar algorithms 
of this class) calculate and propagate utilities (or costs) 
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for each possible value assignment of their neighbouring 
nodes. Thus, the nodes explicitly share the consequences of 
choosing non-preferred states with the preferred one during 
inference through a graphical representation. Eventually, 
this information helps the algorithm to achieve good solution 
quality for large and complex problems.

Despite these aforementioned advantages, scalability 
remains a widely acknowledged challenge for the belief 
propagation algorithms such as Max-Product [14, 15]. 

(i.e. the semiring operator max) for each constraint function 

variables, given the local utility function and a set of 
incoming messages. To be precise, a constraint function that 
depends on n variables having domains composed of d
values each, will need to perform computations for a 
maximizationoperation. As the system scales up, either due 
to discrete random variables with a very large number of 
possible states or constraint functions with high arity, the 
complexity of this step grows exponentially. Examples of 
such problems include massive task allocation in multi-agent 
settings, disparity estimation in computer vision, tracking 
problems in sensor networks, and error-control decoding. 
For such problems, and many other besides, it may be 
expensive to compute and/or store the messages. In essence, 
the inference process of the deployed message passing 
algorithm may take too long to complete, and as such their 
applicability be limited to only small-scale problem settings.

Motivated by this challenge, researchers have studied a 
variety of techniques in order to reduce the complexity of 

have tried to improve the scalability of message passing 
algorithms by reducing the cost of the maximization operator. 
In particular, [15] and [16] reduce the domain size of 
variables associated with constraint functions for task 
allocation domains where nodes’ action choices are strictly 
divided into working on a task or not. However, this method 
is completely application dependent, because it can only be 

domain. Moreover, [17] carries a branch and bound search 
utilizing constraint functions to ensure that the upper and 
lower bounds can be evaluated using only a subset of variable 
values. Nevertheless, the bounding function they propose to 
accomplish this is entirely devoted to mobile sensor 
coordination. Therefore, it is not directly applicable to 
general settings. A more general approach to reduce the cost 
of the maximization operator, called Generalized Fast Belief 
Propagation (G-FBP), is proposed in [14]. In this approach, 

they select and sort the top values of the search space, 
presuming the maximum value can be found from these 
ranges. Here, c is a constant. Nevertheless, they also admit 
that they cannot guarantee in advance whether the 
presumption is true or false, and in the latter case G-FBP 

cost [18]. Recently, [19] develops a generic Function 
Decomposing and State Pruning (FDSP) technique based on 
branch-and-bound. FDSP includes Function Decomposing 

with the intent to reduce the over-heads in computing an 
upper bound of a partial assignment. Moreover, its State 
Pruning (SP) phase is based on branch and bound that 
reduces the search space. Besides, they also theoretically 
prove that these bounds are monotonically non-increasing 
during the search process.

sought to reduce the computation cost of the maximization 
operator of the Max-Sum message passing algorithm [18]. 
This is motivated by the aforementioned pre-processing 
sorting based approach G-FBP. Similar to G-FBP, it is a one-
shot pruning technique. Notably, unlike G-FBP, they provide 
a theoretical guarantee that the reduced search space obtained 
by using their algorithm always provides the desired outcome 
from the maximization operator. The algorithm is generic in 
a sense that it can be applied to any application (or setting) 
of Max-Sum. To be exact, GDP computes the reduced search 
space by considering one of its two semiring operators “sum. 
Hence, GDP cannot be used on the maximization operator of 
the Max-Product algorithm in its current form, though the 
other benchmarking algorithm G-FBP is readily applicable 
to this algorithm. Considering this observation and the 
vast usability of Max-Product coupled with the theoretical 

GDP leads to the fact that further investigation needs to be 
undertaken to comprehend whether GDP can be tailored for 
this particular message passing algorithm.

In light of the above background, this paper proposes a 

is applicable to the Max-Product algorithm, regardless of the 
application domain. Similar to GDP, GDPx operates as a part 

solution quality (see Lemma 1). In other words, we improve 

passing algorithm by reducing the search space over which 
the maximization operation is computed. We empirically 
evaluate the performance of our approach, and we observea 

85% to 99% by using this technique. More importantly, we 
show the relative performance gain of GDPx gets better with 
an increase in the variables’ domain size and the constraint 
functions’ arity, in which the maximization operator acts on. 

The remainder of this paper is structured as follows. We 
describe the problem in more detail inthe section that 
follows. Then, in Section 3, we discuss the complete process 
of GDPx with a worked example. We end this section by 
providing theoretical analyses. Subsequently, in Section 4, 
wepresent the empirical results of our method compared to 
the current state-of-the-art, and Section 5 concludes.



47GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

A constraint reasoning problem that can be solved using the 

tuple , , , where X is a set of discrete variables 

 and  is a set of 

 can 

take value from the states of the corresponding domain . 

is a set of constraint functions , where 

each  is a function associated with a subset of 

variables x

variables in xi . Thus, thefunction x  denotes the 

value for each possible assignment ofthe variables in xi . 
Notably, the dependencies between the variables and the 
functions generate a bipartite graph, called a factor graph. 
The max-product algorithm operates directly in this 
particular graphical representation of a deployed problem. In 
a factor graph, each constraint function x  is represented 

by a square node and is connected to each of its associated 
variable nodes xi  (denoted by circles) by an individual 

edge. Note that the term function is also known as factor, and 
they are used interchangeably throughout this paper. Hence, 
xi  is the arity of x  in this particular graphical 

representation. Within the model, the objective is to assign 
values to the variables X from their corresponding domains 
in order to either maximize or minimize the global objective 
function, which eventually produces the value of each 
variable,  X *

. 

For example, Fig. 1 depicts the relationship among variables 
and functions in a factor graph representation. Here, we have 
a set of four variables  and a set of two 

functions . . Moreover, .  is a set of discrete 

can take 

its value from the domain .The ultimate objective is to 

either maximize or minimize a global objective function 
. Here, the global objective function is 

aproduct of two local functions  and 

.

Fig. 1. A sample factor graph representation with two 
function/factor nodes  and four variable nodes 

x x x x , illustrating a global objective function 

circles and factors are squares. Here, the grey arrows are 
used to highlight the factor-to-variable messages of the Max-
Product belief propagation algorithm, each of which requires 
the maximization operation to be performed.

x

x

 (1)

In the factor graph, 0  is associated (i.e. connected) 
with three variable nodes, and as such, the arity of the 
constraint function 0 is 3. Similar to 0 , the arity of 

constraint function 1 is 3  in this particular example. Note 
that the term function is also known as factor, and they are 
used interchangeably throughout this paper.

As mentioned in the previous section, belief propagation 
algorithms generally follow a message passing protocol 
(also known as belief update or summary propagation 
protocol) to exchange messages (i.e. beliefs) among the 
nodes of the factor graph representation of the aforementioned 
formulation. Notably, the Max-Product algorithm uses 
Equations 2 and 3 for their message passing, and they can be 

and function nodes of a factor graph continuously exchange 
messages (variable to function  (Equation 2) and 

function j  to variable  (Equation 3) to compute an 

approximation of the impact that each of the variable’s value 
have on the global objective function by building a local 
objective function . In Equations 2 - 4,  stands for 

the set of functions connected to variable  and 

represents the set of variables connected to function . 

Once the function is built (Equation 4), each variable picks 

  

 
(2)

x
x

(3)

(4)
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As discussed previously, due to the potentially large 
parameter domain size and constraint functions with high 
arity, the maximization operator of the factor-to-variable 
message is the main reason the max-product belief 
propagation algorithm can be computationally expensive. 
This can be visualized from an example where a function 

arity of the function is n 5 . Here, we assume each of the 
variables can take its value from 10 possible options (i.e. 
states of the domain), implying that the domain size is 
d  for each of the variables. In this case, the function 

node has to perform or  operations to generate 

a message for one of its neighbouring variable nodes. Now, 
each of the function nodes in a factor graph has to generate 
and send a single message to each of its neighbours to 
complete a single round of message passing [6, 12]. For 

example, function node 0  of Figure 1has to send a distinct 

message (grey arrow) to each of its neighbouring variable 

nodes x0 , x1  and x2 . Each of these messages includes the 

expensive maximization operator. Under such circumstances, 

this step. Meanwhile, it is essential to ensure that this 
reduction process does not limit the algorithms’ applicability, 

issue 
paper.

3. The GDPx Algorithm

GDPx (Algorithm 1) works as a part of Equation 3, which 
represents a function-to-variable message of the Max-
Product belief propagation algorithm, in order to reduce the 
search space over which the maximization needs to be 
computed. This algorithm requires as inputs a sending 

function node x  whose utility depends on a set of 

variable nodes ( x j ) associated with it (i.e.neighbours), a 

receiving variable node x  and all the incoming 

messages from the neighbour(s) of  apart from the 

receiving node , denoted as  Finally, GDPx  

returns a pruned range of values (i.e. j ) for each state i of 

the domains of the variables over which the maximization 
operation needs to be performed to generate the message 

from the function node to the variable node 

(i.e. ).

In more detail, S stands for a set 

representing each state of the domains corresponding to x j

(line 1 of Algorithm 1). This implies that S  is the union (

) of those sets of states, each of which corresponds to the 

domain of a variable in x j . Line 2 sorts the local utility of 

the sending function node independently by each state 

. It is worth noting that this sorting can be carried out 

at runtime of a belief propagation algorithm without incurring 
an additional delay [18]. Then the total number of incoming 

messages received by  is represented by n (line 3). Note 

that, a complete worked example of GDPx is illustrated in 
Figure 2 where we use a part of the factor graph of Figure 1 

to show a factor-to-variable (i.e. 1  to x3 ) message 

computation (Figure 2a), as well as the operation of GDPx 
on it (Figure 2b). Here, the local utility of the sending 

function node 1 is shown in atable at the left side of Figure 

2a, which is based on three domain states (for 

simplicity red, blue and green colours are used to distinguish 
the values of the states, respectively) and three neighbouring 

variable nodes x1 , x2 and x3 . Moreover, the direction of 
two incoming messages ( n 2 ) received by 

and , from the variable 

nodes x1 and x2 , respectively, are indicated using the dotted 

black arrows. Then, the arrow from node 1  to variable 

node x3 indicates the desired function-to-variable message 

, 

and the complete calculation is depicted in a table at the left 
side of Fig. 2a.

At this point, line 4 computes m  which is the multiplication 
of the maximum values of each of the messages 

 received by the sending function , other 

than the receiving variable node . Here, k  is one ofthe 
n messages received by . In the worked example of 
Figure 2b, since the maximum of the received messages 

(i.e. 1 ) and 

(i.e. 2 ) by 1 are 

and respectively, the valueof 

m . Now, the for 

loop in lines generates the range of the values for 
each state 

maximum value for the function , and discardthe rest. To 

this end, the function x gets the 

sorted value of from line 2, and stores them in an array 

i
p , which is the maximum of 

the local utility values for the state (i.e. i ). In 

the worked example, the sorted values of domain state are 

stored in ,epicted in the left side of Figure 2b. Hence, the 
value of p  = . Afterwards, line 

computes b , which is the multiplication of the 
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corresponding values of p from the incoming messages of 

(i.e. ). In the example, the values 

corresponding to p (i.e. ) from two incoming 

messages are and , thus the 

value of b

Figure 2b. The rows related to the computation for the state 
 are summarized into this table from the rightmost table of 

Figure 2a, which the complete computation of the function 

1 to variable x3  message based on domain states , 

and G . Having obtained the value of m  and b  from lines 

4 and 8 respectively, line 9 gets the cut point value c , where 

we develop an equation to compute the value, which is 

. The desired maximum value for the state 

must always be found by considering the rows corresponding 

to the values in the range , , denoted by 

, (lines ) (See Lemma 1 

and its proof for the theoretical guarantee and the intuition 
behind the choice of the range).

In the worked example of Figure 2b, the value 

c

, given p , b
and m . Hence, the resultant 

range for the state  of this particular example is 

. This implies that the 
desired maximum value will be found by considering the 
rows corresponding to the values in the range .  As can 

be seen in the right most table of Figure 2b, only considering 

of ; hence, it is not necessary to consider the remaining 
6 rows for this particular instance. To be exact, the value 

for the state  after maximization is , which 
isobtained from the row corresponding to the local utility 
value of . In this way, GDPx reduces the 
computational cost of the expensive maximization operator. 
The grey colour is used to mark the discarded rows of the 
table. We can see that even for such a small instance, having 
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domain size d and arity n 3 , GDPx prunes more 
than  of the search space during the maximization of a 
state in computing the function-to-variable message.

As argued above, it is important to ensure that combining 
GDPx with Equation 3 does not make the computation of 
a function-to-variable message prohibitively expensive. In 
this regard, the original GDP algorithm proposed for the 
Max-Sum algorithm shows that its overall time complexity 
is  [18]. Thus, GDP is able to reduce the 

computation cost of its own. Here, r  stands for the number 

of states of the variables’ domain associated with the sending 

function node (line 5).Then, 
i

 is the size of the array i , 
hence log 

i
is the time complexity to do the binary search 

on i , which is required for their approach. On the other 
hand, our proposed approach GDPx, which works on the 
the Max-Product belief propagation algorithm, does not 

require performing binary search on i
Therefore, the overall complexity of GDPx is r . This 

of a linear computation cost of its own.    

Fig. 2. (a) Computation of a factor-to-variable message (i.e. 
1

 to x
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Fig. 2. (b) Complete operation of GDPx on 

Figure 2.  Worked example of GDPx  in computing a factor-to-variable message, 1 to x3 or , within the factor 
graph shown in Figure 1.  In this example, for simplicity, we show that part of the original factor graph which is necessary for 

,  and G respectively for each of the variables involved in the computation, and arrows between the nodes of the factor 
graph are used to indicate the direction of the corresponding messages.

Lemma 1. During the function-to-variable message compu-

tation, the desired maximum value for a state  must 
always be found from the rows corresponding to the values 
ranging from p  to c .

Proof. We prove this by contradiction. Assume there exists a 
row  that resides outside the range from which the maxi-
mum value for  can be found. That means:

n

where  is the local utility value for which corresponds 

to the row  and ( k n ) is the cor-
responding value of  from the k  incoming message of 

. However, as the row is outside the pruned range, we 
have , or:

  

From Equations 5 and 6, we have:

n

 
Replace m
of Algorithm 1, we have:

n n

We can see that Equation 8 is false. Hence, there 
exists no such row as .

4. Empirical Results

Given the detailed description in the previous section, 
we now empirically evaluate how much speed-up can 
be achieved using GDPx and compare this with the 
performance of G-FBP. In so doing, we run our experiments 

instances of the benchmarking graph colouring problem. It 
is obvious from the discussion of Lemma 1 that our approach 

Product; rather its sole objective is to reduce its computation 
cost while maintaining the same solution quality. Therefore, 
we focus on the computation aspect of the algorithm. More 

GDPx, intend to reduce the computation cost of the most 
expensive phase of the Max-Product belief propagation 
algorithm, that is the maximization operator. This particular 
operator, as discussed in Section 2, depends on two factors: 
i) domain size of the associated (i.e. neighbouring) variable 
nodes of the sending function nodes and ii) density of the 
factor graph, which can be apprehended from the values of 
arity/degree of the sending function nodes. Moreover, it is 
also observed from the literature that a pruning algorithm’s 
performance often varies with the size of the problem setting 
[14, 18].  In light of the aforementioned discussion, we 
perform our experiments on varying these three parameters. 
Note that all of the experiments were performed on a 
simulator implemented in an Intel i Quadcore i GHz 
machine with GB of RAM.

factor graphs having a number of function nodes randomly 
taken from the range 5 to 50, and that each of the factor 
graphs is generated by randomly connecting a number of 

of variable nodes connected to each function node, termed 
the arity n  of a function node (i.e. density), is randomly 



52 Md. Mosaddek Khan and N. V. Q. Trung

chosen from the range . In Figure 3, we report the 
percentage of search space pruned by GDPx and G-FBP 
during the computation of function-to-variable messages 
as the values of the domain size of the variables (i.e. d
) increases. Notably, G-FBP is based on an intuition that 
the maximum value can be found from the partially sorted 
top values (see Section 1 for details). When this 

of the computation cost (i.e. search space). Nevertheless, we 
always consider that their assumption is true while reporting 
the performance of G-FBP for all of the experiments in 

admitted in [14] that the chosen value of the constant c  can 

Fig. 3. 
instances of the graph colouring problem. Here the values of dependent variables, density and number of function nodes, are randomly 
taken from the ranges  and 
performance of G-FBP. Error bars are calculated using standard error of the mean.

Fig. 4. 
instances of the graph colouring problem. Here the values of dependent variables, domain size and number of function nodes, are randomly 

taken from the ranges  and 
performance of G-FBP. Error bars are calculated using standard error of the mean.
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Fig. 5. Percentage of search space pruned as the number of function node increases, GDPx vs G-FBP, for the factor graph representations 

from the ranges  and c  in evaluating the performance 
of G-FBP. Error bars are calculated using standard error of the mean.

Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the 
same setting as Figure 3. Error bars are calculated using standard error of the mean.

c . By taking their observation into account, we consider 4 

values (i.e.  and ) of c  for all of the experiments 
presented in this paper. It is worth noting that the local utility 
tables (i.e. probability distribution tables) for the function 
nodes of a factor graph are generated randomly. Now, to get 
the results based on the aforementioned setting, we initially 

compute the percentage of the search space pruned (i.e. 
speed-up) by the algorithms for a function node by taking 
the average of the speed-ups of all the messages sent by that 
function node. Afterwards, we take the average of the speed-
ups of all the nodes in a factor graph. Finally, we report the 
results of each factor graph averaged over  test runs 
in Figure 3, recording standard errors to ensure statistical 
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Fig. 7. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the 
same setting as Figure 4. Error bars are calculated using standard error of the mean.

Fig. 8. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the 
same setting as Figure 5. Error bars are calculated using standard error of the mean.

In Figure 3, the green line illustrates the performance of 
G-FBP with the value of c . For this setting, it can be 
seen from the trend of the line that G-FBP’s performance is 
only notable for domain size 4 or more. To be exact, this 
algorithm prunes around  of the search space during 

the computation of the maximization operation when d 4
. While in the same setting G-FBP reduces around 
of the search space for the domain size . Although 
G-FBP’s performance is slightly better with c  value , the 
trend is similar to the previous one (orange line). Notably, its 
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pruning rate is around  for the value of the 
domain size . On the other hand, as depicted in the 

orange line of Figure 3, for c 5 , G-FBP’s pruning rates 

are around , 60%, 74% and 85% for the d  values 

 and 6 , respectively (light-yellow line). The pruning 

rate reaches the maximum of 88% with d 7  for this 

setting. Nevertheless, it is clear from the results shown in 
blue line that G-FBP performs even better with lower values 
of c  (i.e. c 2 ). To be precise, it reaches at its peak with 

around 95% pruning rate for d 7 . Having stated that, 

there is no theoretical guarantee that G-FBP will always 
provide the above performance, which as aforementioned, 
are generated considering their presumption always true. In 
this context, [18] shows that due to this phenomenon (i.e. the 
lack of theoretical guarantee), G-FBP produces severely 
inconsistent performance. Despite this issue, we consider 
such to show how our proposed GDPx performs compared 
to the best possible (although unrealistic) performance of the 

of Figure 3 illustrates that GDPx always performs better than 
all the versions of G-FBP. Similar to what we observed from 
the trend of G-FBP’s results, the performance GDPx is better 
when the variables take their values from a larger domain 
size, given that the other parameters remain identical. 
Nevertheless, unlike G-FBP, GDPx prunes around 90% of 
the search space for values of d  as small as 2 . Overall, the 

pruning rate of GDPx always lies within the range of 
, and is correspondingly better than any version 

of the G-FBP algorithm.  Note that neither all the nodes, nor 
all the function-to-variable messages experience similar 
performance from the proposed approach, due to their 

messages.  

Figure 4 illustrates the comparative performance of GDPx 
and G-FBP (four versions) for factor graphs representing 

function nodes’ density/arity (i.e. n ) ranging from 2 to 8. 

Similar to the previous experimental setting, we consider 
factor graphs having a number of function nodes randomly 
taken from the range 5  to . However, we report the 

pruning rate while increasing the value of n  to observe how 

density. Here, we randomly choose the values of the 
variables’ domain size from the range . Finally, we 

report the results of each factor graph averaged over 100 test 
runs and record standard errors to ensure statistical 

at least 88% or more of the search space during the 
computation of the maximization operation for the Max-
Product algorithm (red-line). Surprisingly, GDPx’s pruning 
rate reaches around 99% for the factor graphs with n ’s 

value 6, 7 or 8 for this setting. This trend coupled with the 
previous experiment’s observation is remarkably important 

because it gives us a clear indication that GDPx is able to 
prune the maximum amount of search space when the values 
of n  and d  becomes larger. On the other hand, even the 

best-case of the G-FBP algorithm never outperforms GDPx, 
though its performance is getting better with the lower value 
of c . However, it is worth noting that with a lower value of 
c  there is a higher possibility that their presumption is false, 

which would force G-FBP to consider the full search space 
again.

Figure 5 which reports the performance of GDPx and G-FBP 
(four versions) as the number of function node increases 
from as small as 5 to the maximum 100. For this experiment, 
the values of dependent variables, domain size d  and nodes’ 

density n , are randomly taken from the ranges  and 

, respectively. Similar to the previous two experiments, 

we initially compute the percentage of the search space 
pruned by the algorithms for a function node by taking the 
average of the speed-ups of all the messages sent by that 
function node. Then, we take the average of the pruning rate 
(%) of all the nodes in a factor graph. Finally, we report the 
results of each factor graph averaged over 100 test runs in 
Figure 5, recording standard errors to ensure statistical 

(i.e. c 2 ) prunes around  of the search space 

(blue-line) in this particular experiment. On the other hand, 
GDPx prunes around  of the search, and more 
importantly in a steady rate. In addition, for all three of these 
experiments, we run the one-way ANOVA with post-hoc 
Tukey HSD test. While doing so, we consider GDPx, G-FBP 
( c 2 ), G-FBP( c 5 ), G-FBP ( c ) and G-FBP (

c ) as treatments, each of which illustrates the 
percentage of the search space pruned. For each experiment, 
the observed p -value corresponding to the F-statistic of 

one-way ANOVA is lower than 0.05, suggesting that the one 

we employ a post-hoc test (Tukey HSD) that also suggests 

each of the remains, individually (i.e. p ).

When taken together the above empirical results, it is 

cost of the maximization operator of the Max-Product 
algorithm by reducing the search space upon which the 
maximization operator acts on. It can also be claimed based 
on the theoretical analysis that GDPx does not compromise 
on the solution quality in doing so. Whereas its counterpart 
G-FBP cannot provide this theoretical guarantee. Moreover, 
GDPx reduces more of the search spaces compared to the 
best cases of all the versions of G-FBP, and this is true 
for all the cases that we have considered in our empirical 

what does this reduction of search space actually mean in 
reducing the completion time (Figures 6, 7, 8). To do so, we 
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report the time GDPx takes to compute a single function-
to-variable message (i.e. the completion time), and compare 
this with the completion time of a single message though 
full-search. Note that, since the search space obtained by 
G-FBP is always larger than what is achieved by GDPx, 
its completion time can never be smaller than GDPx. We 
therefore to avoid redundancy did not consider G-FBP in this 
particular experiment.

GDPx in terms of completion time (red line), and compare 
this to the standard way of computing the maximization 
operation (dotted-black line) in a single function-to-variable 
message for the same experimental setting (i.e. the values of 
arity and the number of function nodes) used in Figure 3. To 
report the result for each domain size d , we take the average 

of 

that GDPx saves 50% and 75% completion time of the full 
search when domain sizes are 2 and 3, respectively. Then, 
the impact of GDPx is getting larger with the value of d . To 

be precise, the performance gain reaches around  

to  for the domain size of the variable nodes 3 to 10 

in this setting. 

In Figure 7, the same metrics (i.e. the completion time) is 
considered to measure GDPx’s performance. However, the 
experimental setting for this experiment is identical to what 
we considered in Figure 4. It can be observed from the trend 

consumes 50% to 90% less time than its counterpart for the 
value of n  (i.e. number of variables connected to a function 

node) 3 to 10. Notably, the trend is identical to the previous 
experiment, and this is important because it gives us a clear 
indication that GDPx is able to reduce the maximum amount 
of completion time when the values of n  and d  becomes 

larger.  

Finally, using the same experimental setting as depicted 
in Figure 5, Figure 8 illustrates the completion time of a 
single message through GDPx as well as with the standard 
approach. We do this to observe how GDPx performs for 

67% to 88% reduction of the completion time in this setting. 

size, instead it gets better for larger settings. Moreover, it is 
worth noting from the results depicted in Figures6, 7 and 8 
that GDPx’s own runtime is also negligible. This is expected 

a linear time is required to execute the proposed GDPx 
algorithm (see Section 3).  

In this paper, we tailor the GDP algorithm and develop a new 

computation cost of the maximization operator of Max-
Product algorithm. Our extensive empirical evidence 

from around to by using this technique. We 

demonstrate that the relative performance gain of GDPx 
improves with increasing the domain size of the variables 
and the arity of the constraint functions on which the 

empirical proof for scaling up. In the future, we intend to 
study whether branch and bound based FDSP can be used 

applications and to compare its performance to that of our 
GDPx. 

This paper builds on our previous work presented at the 
Seventeenth International Conference on Autonomous 
Agents and Multiagent Systems, held in Stockholm, Sweden, 
from July 10-15, 2018 [18]. This work is primarily funded 
by the Centennial Research Grant (CRG) of University of 
Dhaka.
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