
https://doi.org/10.3329/dujase.v7i1.62886DUJASE Vol. 7 (1) 45-57, 2022 (January)

1 2

1

2

*Email: mosaddek@du.ac.bd

Received on 27 October 2021, Accepted for publication on 18 April 2022

ABSTRACT

Keywords: Belief Propagation, Generalized Distributive Law, Max-Product, Maximization Operation

1. Introduction

Belief propagation algorithms, originally invented by Pearl,
have been used to solve constraint reasoning problems in a
wide range of application domains including error correcting
codes, speech recognition, image understanding and multi-
agent coordination and constraint recommender systems [1,
2, 3, 4], etc. In general, the belief propagation algorithms,
also known as message passing algorithms, deal with the
constraint reasoning problems by performing inference
on graphical models that have been used to represent such
problems [5]. The graphical models, such as Bayesian

graphs, have been used with the same amount of success to
articulate problems with deterministic behaviour, as well as in
situations involving probability distributions or uncertainty
[6, 7, 8]. The former is typically named as the deterministic
graphical models and the latter as the probabilistic graphical
models.

It is worth mentioning that the initial intention was to employ
the belief propagation algorithms only for graphical models
without loops or cycles for which they are guaranteed
to provide an exact or optimal solution. Nevertheless,
enough empirical evidences have been found showing the

loopy graphical models [9, 10, 11]. Additionally, one very
important feature of the message passing algorithms have

famously shown that any algorithm of this type can be seen
as a special case of Generalized Distributive Law (GDL)

two semiring operators, “max” and “product”, are used to
form one of the most studied message passing algorithm
named Max-Product.

The Max-Product algorithm has received particular attention
amongst all of the existing message passing algorithms.
Similar to other such algorithms, Max-Product performs
inference on a graphical model by either following a
synchronous or an asynchronous message update protocol
[6, 13]. The messages here are generated using the GDL
framework that has an axiomatic tendency of computational

use of constrained computational and communication

complex utility relationships (generated from the constraints)
through the graph. In any case, all the nodes of a graphical
model continuously generate and exchange messages
towards completing the inference process. During the
process, the semiring operator “max” serves as the summary
operator for the Max-Product algorithm. Moreover, nodes
in this particular algorithm (and other similar algorithms
of this class) calculate and propagate utilities (or costs)

46 Md. Mosaddek Khan and N. V. Q. Trung

for each possible value assignment of their neighbouring
nodes. Thus, the nodes explicitly share the consequences of
choosing non-preferred states with the preferred one during
inference through a graphical representation. Eventually,
this information helps the algorithm to achieve good solution
quality for large and complex problems.

Despite these aforementioned advantages, scalability
remains a widely acknowledged challenge for the belief
propagation algorithms such as Max-Product [14, 15].

(i.e. the semiring operator max) for each constraint function

variables, given the local utility function and a set of
incoming messages. To be precise, a constraint function that
depends on n variables having domains composed of d
values each, will need to perform computations for a
maximizationoperation. As the system scales up, either due
to discrete random variables with a very large number of
possible states or constraint functions with high arity, the
complexity of this step grows exponentially. Examples of
such problems include massive task allocation in multi-agent
settings, disparity estimation in computer vision, tracking
problems in sensor networks, and error-control decoding.
For such problems, and many other besides, it may be
expensive to compute and/or store the messages. In essence,
the inference process of the deployed message passing
algorithm may take too long to complete, and as such their
applicability be limited to only small-scale problem settings.

Motivated by this challenge, researchers have studied a
variety of techniques in order to reduce the complexity of

have tried to improve the scalability of message passing
algorithms by reducing the cost of the maximization operator.
In particular, [15] and [16] reduce the domain size of
variables associated with constraint functions for task
allocation domains where nodes’ action choices are strictly
divided into working on a task or not. However, this method
is completely application dependent, because it can only be

domain. Moreover, [17] carries a branch and bound search
utilizing constraint functions to ensure that the upper and
lower bounds can be evaluated using only a subset of variable
values. Nevertheless, the bounding function they propose to
accomplish this is entirely devoted to mobile sensor
coordination. Therefore, it is not directly applicable to
general settings. A more general approach to reduce the cost
of the maximization operator, called Generalized Fast Belief
Propagation (G-FBP), is proposed in [14]. In this approach,

they select and sort the top values of the search space,
presuming the maximum value can be found from these
ranges. Here, c is a constant. Nevertheless, they also admit
that they cannot guarantee in advance whether the
presumption is true or false, and in the latter case G-FBP

cost [18]. Recently, [19] develops a generic Function
Decomposing and State Pruning (FDSP) technique based on
branch-and-bound. FDSP includes Function Decomposing

with the intent to reduce the over-heads in computing an
upper bound of a partial assignment. Moreover, its State
Pruning (SP) phase is based on branch and bound that
reduces the search space. Besides, they also theoretically
prove that these bounds are monotonically non-increasing
during the search process.

sought to reduce the computation cost of the maximization
operator of the Max-Sum message passing algorithm [18].
This is motivated by the aforementioned pre-processing
sorting based approach G-FBP. Similar to G-FBP, it is a one-
shot pruning technique. Notably, unlike G-FBP, they provide
a theoretical guarantee that the reduced search space obtained
by using their algorithm always provides the desired outcome
from the maximization operator. The algorithm is generic in
a sense that it can be applied to any application (or setting)
of Max-Sum. To be exact, GDP computes the reduced search
space by considering one of its two semiring operators “sum.
Hence, GDP cannot be used on the maximization operator of
the Max-Product algorithm in its current form, though the
other benchmarking algorithm G-FBP is readily applicable
to this algorithm. Considering this observation and the
vast usability of Max-Product coupled with the theoretical

GDP leads to the fact that further investigation needs to be
undertaken to comprehend whether GDP can be tailored for
this particular message passing algorithm.

In light of the above background, this paper proposes a

is applicable to the Max-Product algorithm, regardless of the
application domain. Similar to GDP, GDPx operates as a part

solution quality (see Lemma 1). In other words, we improve

passing algorithm by reducing the search space over which
the maximization operation is computed. We empirically
evaluate the performance of our approach, and we observea

85% to 99% by using this technique. More importantly, we
show the relative performance gain of GDPx gets better with
an increase in the variables’ domain size and the constraint
functions’ arity, in which the maximization operator acts on.

The remainder of this paper is structured as follows. We
describe the problem in more detail inthe section that
follows. Then, in Section 3, we discuss the complete process
of GDPx with a worked example. We end this section by
providing theoretical analyses. Subsequently, in Section 4,
wepresent the empirical results of our method compared to
the current state-of-the-art, and Section 5 concludes.

47GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

A constraint reasoning problem that can be solved using the

tuple , , , where X is a set of discrete variables

 and is a set of

 can

take value from the states of the corresponding domain .

is a set of constraint functions , where

each is a function associated with a subset of

variables x

variables in xi . Thus, thefunction x denotes the

value for each possible assignment ofthe variables in xi .
Notably, the dependencies between the variables and the
functions generate a bipartite graph, called a factor graph.
The max-product algorithm operates directly in this
particular graphical representation of a deployed problem. In
a factor graph, each constraint function x is represented

by a square node and is connected to each of its associated
variable nodes xi (denoted by circles) by an individual

edge. Note that the term function is also known as factor, and
they are used interchangeably throughout this paper. Hence,
xi is the arity of x in this particular graphical

representation. Within the model, the objective is to assign
values to the variables X from their corresponding domains
in order to either maximize or minimize the global objective
function, which eventually produces the value of each
variable, X *

.

For example, Fig. 1 depicts the relationship among variables
and functions in a factor graph representation. Here, we have
a set of four variables and a set of two

functions . . Moreover, . is a set of discrete

can take

its value from the domain .The ultimate objective is to

either maximize or minimize a global objective function
. Here, the global objective function is

aproduct of two local functions and

.

Fig. 1. A sample factor graph representation with two
function/factor nodes and four variable nodes

x x x x , illustrating a global objective function

circles and factors are squares. Here, the grey arrows are
used to highlight the factor-to-variable messages of the Max-
Product belief propagation algorithm, each of which requires
the maximization operation to be performed.

x

x

 (1)

In the factor graph, 0 is associated (i.e. connected)
with three variable nodes, and as such, the arity of the
constraint function 0 is 3. Similar to 0 , the arity of

constraint function 1 is 3 in this particular example. Note
that the term function is also known as factor, and they are
used interchangeably throughout this paper.

As mentioned in the previous section, belief propagation
algorithms generally follow a message passing protocol
(also known as belief update or summary propagation
protocol) to exchange messages (i.e. beliefs) among the
nodes of the factor graph representation of the aforementioned
formulation. Notably, the Max-Product algorithm uses
Equations 2 and 3 for their message passing, and they can be

and function nodes of a factor graph continuously exchange
messages (variable to function (Equation 2) and

function j to variable (Equation 3) to compute an

approximation of the impact that each of the variable’s value
have on the global objective function by building a local
objective function . In Equations 2 - 4, stands for

the set of functions connected to variable and

represents the set of variables connected to function .

Once the function is built (Equation 4), each variable picks

(2)

x
x

(3)

(4)

48 Md. Mosaddek Khan and N. V. Q. Trung

As discussed previously, due to the potentially large
parameter domain size and constraint functions with high
arity, the maximization operator of the factor-to-variable
message is the main reason the max-product belief
propagation algorithm can be computationally expensive.
This can be visualized from an example where a function

arity of the function is n 5 . Here, we assume each of the
variables can take its value from 10 possible options (i.e.
states of the domain), implying that the domain size is
d for each of the variables. In this case, the function

node has to perform or operations to generate

a message for one of its neighbouring variable nodes. Now,
each of the function nodes in a factor graph has to generate
and send a single message to each of its neighbours to
complete a single round of message passing [6, 12]. For

example, function node 0 of Figure 1has to send a distinct

message (grey arrow) to each of its neighbouring variable

nodes x0 , x1 and x2 . Each of these messages includes the

expensive maximization operator. Under such circumstances,

this step. Meanwhile, it is essential to ensure that this
reduction process does not limit the algorithms’ applicability,

issue
paper.

3. The GDPx Algorithm

GDPx (Algorithm 1) works as a part of Equation 3, which
represents a function-to-variable message of the Max-
Product belief propagation algorithm, in order to reduce the
search space over which the maximization needs to be
computed. This algorithm requires as inputs a sending

function node x whose utility depends on a set of

variable nodes (x j) associated with it (i.e.neighbours), a

receiving variable node x and all the incoming

messages from the neighbour(s) of apart from the

receiving node , denoted as Finally, GDPx

returns a pruned range of values (i.e. j) for each state i of

the domains of the variables over which the maximization
operation needs to be performed to generate the message

from the function node to the variable node

(i.e.).

In more detail, S stands for a set

representing each state of the domains corresponding to x j

(line 1 of Algorithm 1). This implies that S is the union (

) of those sets of states, each of which corresponds to the

domain of a variable in x j . Line 2 sorts the local utility of

the sending function node independently by each state

. It is worth noting that this sorting can be carried out

at runtime of a belief propagation algorithm without incurring
an additional delay [18]. Then the total number of incoming

messages received by is represented by n (line 3). Note

that, a complete worked example of GDPx is illustrated in
Figure 2 where we use a part of the factor graph of Figure 1

to show a factor-to-variable (i.e. 1 to x3) message

computation (Figure 2a), as well as the operation of GDPx
on it (Figure 2b). Here, the local utility of the sending

function node 1 is shown in atable at the left side of Figure

2a, which is based on three domain states (for

simplicity red, blue and green colours are used to distinguish
the values of the states, respectively) and three neighbouring

variable nodes x1 , x2 and x3 . Moreover, the direction of
two incoming messages (n 2) received by

and , from the variable

nodes x1 and x2 , respectively, are indicated using the dotted

black arrows. Then, the arrow from node 1 to variable

node x3 indicates the desired function-to-variable message

,

and the complete calculation is depicted in a table at the left
side of Fig. 2a.

At this point, line 4 computes m which is the multiplication
of the maximum values of each of the messages

 received by the sending function , other

than the receiving variable node . Here, k is one ofthe
n messages received by . In the worked example of
Figure 2b, since the maximum of the received messages

(i.e. 1) and

(i.e. 2) by 1 are

and respectively, the valueof

m . Now, the for

loop in lines generates the range of the values for
each state

maximum value for the function , and discardthe rest. To

this end, the function x gets the

sorted value of from line 2, and stores them in an array

i
p , which is the maximum of

the local utility values for the state (i.e. i). In

the worked example, the sorted values of domain state are

stored in ,epicted in the left side of Figure 2b. Hence, the
value of p = . Afterwards, line

computes b , which is the multiplication of the

49GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

corresponding values of p from the incoming messages of

(i.e.). In the example, the values

corresponding to p (i.e.) from two incoming

messages are and , thus the

value of b

Figure 2b. The rows related to the computation for the state
 are summarized into this table from the rightmost table of

Figure 2a, which the complete computation of the function

1 to variable x3 message based on domain states ,

and G . Having obtained the value of m and b from lines

4 and 8 respectively, line 9 gets the cut point value c , where

we develop an equation to compute the value, which is

. The desired maximum value for the state

must always be found by considering the rows corresponding

to the values in the range , , denoted by

, (lines) (See Lemma 1

and its proof for the theoretical guarantee and the intuition
behind the choice of the range).

In the worked example of Figure 2b, the value

c

, given p , b
and m . Hence, the resultant

range for the state of this particular example is

. This implies that the
desired maximum value will be found by considering the
rows corresponding to the values in the range . As can

be seen in the right most table of Figure 2b, only considering

of ; hence, it is not necessary to consider the remaining
6 rows for this particular instance. To be exact, the value

for the state after maximization is , which
isobtained from the row corresponding to the local utility
value of . In this way, GDPx reduces the
computational cost of the expensive maximization operator.
The grey colour is used to mark the discarded rows of the
table. We can see that even for such a small instance, having

50 Md. Mosaddek Khan and N. V. Q. Trung

domain size d and arity n 3 , GDPx prunes more
than of the search space during the maximization of a
state in computing the function-to-variable message.

As argued above, it is important to ensure that combining
GDPx with Equation 3 does not make the computation of
a function-to-variable message prohibitively expensive. In
this regard, the original GDP algorithm proposed for the
Max-Sum algorithm shows that its overall time complexity
is [18]. Thus, GDP is able to reduce the

computation cost of its own. Here, r stands for the number

of states of the variables’ domain associated with the sending

function node (line 5).Then,
i

 is the size of the array i ,
hence log

i
is the time complexity to do the binary search

on i , which is required for their approach. On the other
hand, our proposed approach GDPx, which works on the
the Max-Product belief propagation algorithm, does not

require performing binary search on i
Therefore, the overall complexity of GDPx is r . This

of a linear computation cost of its own.

Fig. 2. (a) Computation of a factor-to-variable message (i.e.
1

 to x

51GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

Fig. 2. (b) Complete operation of GDPx on

Figure 2. Worked example of GDPx in computing a factor-to-variable message, 1 to x3 or , within the factor
graph shown in Figure 1. In this example, for simplicity, we show that part of the original factor graph which is necessary for

, and G respectively for each of the variables involved in the computation, and arrows between the nodes of the factor
graph are used to indicate the direction of the corresponding messages.

Lemma 1. During the function-to-variable message compu-

tation, the desired maximum value for a state must
always be found from the rows corresponding to the values
ranging from p to c .

Proof. We prove this by contradiction. Assume there exists a
row that resides outside the range from which the maxi-
mum value for can be found. That means:

n

where is the local utility value for which corresponds

to the row and (k n) is the cor-
responding value of from the k incoming message of

. However, as the row is outside the pruned range, we
have , or:

From Equations 5 and 6, we have:

n

Replace m
of Algorithm 1, we have:

n n

We can see that Equation 8 is false. Hence, there
exists no such row as .

4. Empirical Results

Given the detailed description in the previous section,
we now empirically evaluate how much speed-up can
be achieved using GDPx and compare this with the
performance of G-FBP. In so doing, we run our experiments

instances of the benchmarking graph colouring problem. It
is obvious from the discussion of Lemma 1 that our approach

Product; rather its sole objective is to reduce its computation
cost while maintaining the same solution quality. Therefore,
we focus on the computation aspect of the algorithm. More

GDPx, intend to reduce the computation cost of the most
expensive phase of the Max-Product belief propagation
algorithm, that is the maximization operator. This particular
operator, as discussed in Section 2, depends on two factors:
i) domain size of the associated (i.e. neighbouring) variable
nodes of the sending function nodes and ii) density of the
factor graph, which can be apprehended from the values of
arity/degree of the sending function nodes. Moreover, it is
also observed from the literature that a pruning algorithm’s
performance often varies with the size of the problem setting
[14, 18]. In light of the aforementioned discussion, we
perform our experiments on varying these three parameters.
Note that all of the experiments were performed on a
simulator implemented in an Intel i Quadcore i GHz
machine with GB of RAM.

factor graphs having a number of function nodes randomly
taken from the range 5 to 50, and that each of the factor
graphs is generated by randomly connecting a number of

of variable nodes connected to each function node, termed
the arity n of a function node (i.e. density), is randomly

52 Md. Mosaddek Khan and N. V. Q. Trung

chosen from the range . In Figure 3, we report the
percentage of search space pruned by GDPx and G-FBP
during the computation of function-to-variable messages
as the values of the domain size of the variables (i.e. d
) increases. Notably, G-FBP is based on an intuition that
the maximum value can be found from the partially sorted
top values (see Section 1 for details). When this

of the computation cost (i.e. search space). Nevertheless, we
always consider that their assumption is true while reporting
the performance of G-FBP for all of the experiments in

admitted in [14] that the chosen value of the constant c can

Fig. 3.
instances of the graph colouring problem. Here the values of dependent variables, density and number of function nodes, are randomly
taken from the ranges and
performance of G-FBP. Error bars are calculated using standard error of the mean.

Fig. 4.
instances of the graph colouring problem. Here the values of dependent variables, domain size and number of function nodes, are randomly

taken from the ranges and
performance of G-FBP. Error bars are calculated using standard error of the mean.

53GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

Fig. 5. Percentage of search space pruned as the number of function node increases, GDPx vs G-FBP, for the factor graph representations

from the ranges and c in evaluating the performance
of G-FBP. Error bars are calculated using standard error of the mean.

Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the
same setting as Figure 3. Error bars are calculated using standard error of the mean.

c . By taking their observation into account, we consider 4

values (i.e. and) of c for all of the experiments
presented in this paper. It is worth noting that the local utility
tables (i.e. probability distribution tables) for the function
nodes of a factor graph are generated randomly. Now, to get
the results based on the aforementioned setting, we initially

compute the percentage of the search space pruned (i.e.
speed-up) by the algorithms for a function node by taking
the average of the speed-ups of all the messages sent by that
function node. Afterwards, we take the average of the speed-
ups of all the nodes in a factor graph. Finally, we report the
results of each factor graph averaged over test runs
in Figure 3, recording standard errors to ensure statistical

54 Md. Mosaddek Khan and N. V. Q. Trung

Fig. 7. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the
same setting as Figure 4. Error bars are calculated using standard error of the mean.

Fig. 8. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the
same setting as Figure 5. Error bars are calculated using standard error of the mean.

In Figure 3, the green line illustrates the performance of
G-FBP with the value of c . For this setting, it can be
seen from the trend of the line that G-FBP’s performance is
only notable for domain size 4 or more. To be exact, this
algorithm prunes around of the search space during

the computation of the maximization operation when d 4
. While in the same setting G-FBP reduces around
of the search space for the domain size . Although
G-FBP’s performance is slightly better with c value , the
trend is similar to the previous one (orange line). Notably, its

55GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

pruning rate is around for the value of the
domain size . On the other hand, as depicted in the

orange line of Figure 3, for c 5 , G-FBP’s pruning rates

are around , 60%, 74% and 85% for the d values

 and 6 , respectively (light-yellow line). The pruning

rate reaches the maximum of 88% with d 7 for this

setting. Nevertheless, it is clear from the results shown in
blue line that G-FBP performs even better with lower values
of c (i.e. c 2). To be precise, it reaches at its peak with

around 95% pruning rate for d 7 . Having stated that,

there is no theoretical guarantee that G-FBP will always
provide the above performance, which as aforementioned,
are generated considering their presumption always true. In
this context, [18] shows that due to this phenomenon (i.e. the
lack of theoretical guarantee), G-FBP produces severely
inconsistent performance. Despite this issue, we consider
such to show how our proposed GDPx performs compared
to the best possible (although unrealistic) performance of the

of Figure 3 illustrates that GDPx always performs better than
all the versions of G-FBP. Similar to what we observed from
the trend of G-FBP’s results, the performance GDPx is better
when the variables take their values from a larger domain
size, given that the other parameters remain identical.
Nevertheless, unlike G-FBP, GDPx prunes around 90% of
the search space for values of d as small as 2 . Overall, the

pruning rate of GDPx always lies within the range of
, and is correspondingly better than any version

of the G-FBP algorithm. Note that neither all the nodes, nor
all the function-to-variable messages experience similar
performance from the proposed approach, due to their

messages.

Figure 4 illustrates the comparative performance of GDPx
and G-FBP (four versions) for factor graphs representing

function nodes’ density/arity (i.e. n) ranging from 2 to 8.

Similar to the previous experimental setting, we consider
factor graphs having a number of function nodes randomly
taken from the range 5 to . However, we report the

pruning rate while increasing the value of n to observe how

density. Here, we randomly choose the values of the
variables’ domain size from the range . Finally, we

report the results of each factor graph averaged over 100 test
runs and record standard errors to ensure statistical

at least 88% or more of the search space during the
computation of the maximization operation for the Max-
Product algorithm (red-line). Surprisingly, GDPx’s pruning
rate reaches around 99% for the factor graphs with n ’s

value 6, 7 or 8 for this setting. This trend coupled with the
previous experiment’s observation is remarkably important

because it gives us a clear indication that GDPx is able to
prune the maximum amount of search space when the values
of n and d becomes larger. On the other hand, even the

best-case of the G-FBP algorithm never outperforms GDPx,
though its performance is getting better with the lower value
of c . However, it is worth noting that with a lower value of
c there is a higher possibility that their presumption is false,

which would force G-FBP to consider the full search space
again.

Figure 5 which reports the performance of GDPx and G-FBP
(four versions) as the number of function node increases
from as small as 5 to the maximum 100. For this experiment,
the values of dependent variables, domain size d and nodes’

density n , are randomly taken from the ranges and

, respectively. Similar to the previous two experiments,

we initially compute the percentage of the search space
pruned by the algorithms for a function node by taking the
average of the speed-ups of all the messages sent by that
function node. Then, we take the average of the pruning rate
(%) of all the nodes in a factor graph. Finally, we report the
results of each factor graph averaged over 100 test runs in
Figure 5, recording standard errors to ensure statistical

(i.e. c 2) prunes around of the search space

(blue-line) in this particular experiment. On the other hand,
GDPx prunes around of the search, and more
importantly in a steady rate. In addition, for all three of these
experiments, we run the one-way ANOVA with post-hoc
Tukey HSD test. While doing so, we consider GDPx, G-FBP
(c 2), G-FBP(c 5), G-FBP (c) and G-FBP (

c) as treatments, each of which illustrates the
percentage of the search space pruned. For each experiment,
the observed p -value corresponding to the F-statistic of

one-way ANOVA is lower than 0.05, suggesting that the one

we employ a post-hoc test (Tukey HSD) that also suggests

each of the remains, individually (i.e. p).

When taken together the above empirical results, it is

cost of the maximization operator of the Max-Product
algorithm by reducing the search space upon which the
maximization operator acts on. It can also be claimed based
on the theoretical analysis that GDPx does not compromise
on the solution quality in doing so. Whereas its counterpart
G-FBP cannot provide this theoretical guarantee. Moreover,
GDPx reduces more of the search spaces compared to the
best cases of all the versions of G-FBP, and this is true
for all the cases that we have considered in our empirical

what does this reduction of search space actually mean in
reducing the completion time (Figures 6, 7, 8). To do so, we

56 Md. Mosaddek Khan and N. V. Q. Trung

report the time GDPx takes to compute a single function-
to-variable message (i.e. the completion time), and compare
this with the completion time of a single message though
full-search. Note that, since the search space obtained by
G-FBP is always larger than what is achieved by GDPx,
its completion time can never be smaller than GDPx. We
therefore to avoid redundancy did not consider G-FBP in this
particular experiment.

GDPx in terms of completion time (red line), and compare
this to the standard way of computing the maximization
operation (dotted-black line) in a single function-to-variable
message for the same experimental setting (i.e. the values of
arity and the number of function nodes) used in Figure 3. To
report the result for each domain size d , we take the average

of

that GDPx saves 50% and 75% completion time of the full
search when domain sizes are 2 and 3, respectively. Then,
the impact of GDPx is getting larger with the value of d . To

be precise, the performance gain reaches around

to for the domain size of the variable nodes 3 to 10

in this setting.

In Figure 7, the same metrics (i.e. the completion time) is
considered to measure GDPx’s performance. However, the
experimental setting for this experiment is identical to what
we considered in Figure 4. It can be observed from the trend

consumes 50% to 90% less time than its counterpart for the
value of n (i.e. number of variables connected to a function

node) 3 to 10. Notably, the trend is identical to the previous
experiment, and this is important because it gives us a clear
indication that GDPx is able to reduce the maximum amount
of completion time when the values of n and d becomes

larger.

Finally, using the same experimental setting as depicted
in Figure 5, Figure 8 illustrates the completion time of a
single message through GDPx as well as with the standard
approach. We do this to observe how GDPx performs for

67% to 88% reduction of the completion time in this setting.

size, instead it gets better for larger settings. Moreover, it is
worth noting from the results depicted in Figures6, 7 and 8
that GDPx’s own runtime is also negligible. This is expected

a linear time is required to execute the proposed GDPx
algorithm (see Section 3).

In this paper, we tailor the GDP algorithm and develop a new

computation cost of the maximization operator of Max-
Product algorithm. Our extensive empirical evidence

from around to by using this technique. We

demonstrate that the relative performance gain of GDPx
improves with increasing the domain size of the variables
and the arity of the constraint functions on which the

empirical proof for scaling up. In the future, we intend to
study whether branch and bound based FDSP can be used

applications and to compare its performance to that of our
GDPx.

This paper builds on our previous work presented at the
Seventeenth International Conference on Autonomous
Agents and Multiagent Systems, held in Stockholm, Sweden,
from July 10-15, 2018 [18]. This work is primarily funded
by the Centennial Research Grant (CRG) of University of
Dhaka.

References
1. J. Pearl, Probabilistic reasoning in intelligent systems: Networks

of plausible inference (representation and reasoning), 1988.

2. J. Sun, N.-N. Zheng, H.-Y. Shum, Stereo matching using
belief propagation,
machine intelligence, 25 (7), 787–800, 2003.

3. M. P. Fossorier, M. Mihaljevic, H. Imai, Reducecomplexity
iterative decoding of low-density parity check codes based on
belief propagation, , 47
(5), 673–680, 1999.

4. A. Farinelli, A. Rogers, A. Petcu, N. R. Jennings, Decentralised
coordination of low-power embedded devices using the max-
sum algorithm, in: Proceedings of the 7th International Joint

, Vol. 2, pp. 639–646, 2008.

5. R. Dechter, Reasoning with graphical models (2007).

6. F. R. Kschischang, B. J. Frey, H. Loeliger, Factor graphs and
the sum-product algorithm, IEEE Transactions on Information
Theory, 47 (2), 498–519, 2001.

7. A. R. Leite, F. Enembreck, J. A. Barth`es, Distributed constraint
optimization problems:

, 41 (11), 5139–5157, 2014.

8. F. Fioretto, E. Pontelli, W. Yeoh, Distributed constraint
optimization problems and applications:

, 61, 623–698, 2018.

9. K. P. Murphy, Y. Weiss, M. I. Jordan, Loopy belief propagation
for approximate inference: An empirical study, in: Proceedings

., pp.467–475,
1999.

57GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

10.
propagation for early vision, International journal of computer
vision, 70 (1), 41–54, 2006.

11. A. Farinelli, A. Rogers, N. R. Jennings, Agent-based
decentralised coordination for sensor networks using the max-
sum algorithm, ,
28 (3), 337–380, 2014.

12. S. M. Aji, R. McEliece, The generalized distributive law, IEEE
, 46 (2), 325–343, 2000.

13. M. M. Khan, L. Tran-Thanh, S. D. Ramchurn, N. R. Jennings,
Speeding up gdl-based message passing algorithms for large-
scale dcops, The Computer Journal, 61 (11), 1639 –1666, 2018.

14. Y. Kim, V. Lesser, Improved max-sum algorithm for dcop with
n-ary constraints, in: Proceedings of the 12th International

, pp. 191–198, 2013.

15. S. D. Ramchurn, A. Farinelli, K. S. Macarthur, N. R. Jennings,
Decentralized coordination in robocup rescue,
Journal, 53, 1447–1461, 2010.

16. K. S. Macarthur, R. Stranders, S. D. Ramchurn, N. R. Jennings,
A distributed anytime algorithm for dynamic task allocation
in multi-agent systems, in: Proceedings of the 25th AAAI

, pp. 701–706, 2011.

17. R. Stranders, A. Farinelli, A. Rogers, N. R. Jennings,
Decentralised coordination of mobile sensors using the max-
sum algorithm, in: Proceedings of the 21st International Joint

, Vol. 9, pp. 299–
304, 2009.

18. M. M. Khan, L. Tran-Thanh, N. R. Jennings, A generic domain
pruning technique for gdl-based dcop algorithms in cooperative
multi-agent systems, in: Proceedings of the 17th International

, pp. 1595–1603,
2018.

19. Z. Chen, X. Jiang, Y. Deng, D. Chen, Z. He, A generic approach
to accelerating belief propagation based incomplete algorithms
for dcops via a branch-and-bound technique, in: Proceedings

, Vol. 33, pp.
6038–6045, 2019.

