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Abstract

Ternary logic synthesis methods have recently been introduced to realize multi-input ternary logic functions using
cascades of ternary permutative gates. Design of Ternary Reversible Barrel Shifter is first proposed in this paper.
The proposed design methodology is based on first realizing the circuit using Ternary Feynman gates and Ternary
Modified Fredkin Gate (MFG). Then we have analyzed the performance of the proposed circuit mathematically to
define lower bounds for the number of the basic gates, garbage outputs and ancilla bits.
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1. Introduction

According to Landauer [1], binary logic circuits built using
traditional 1irreversible gates lead certainly to energy
dissipation. Landauer and Bennett [1, 2] proved that losing
information in a circuit causes losing power. The gate that
does not loose information and has a one-to-one mapping
between the input values and the output values is called
reversible. At present, Quantum computing is one of the
most emerging research fields which is absolutely reversible
and may lead to zero power dissipation. Among different
multiple-valued quantum logics, ternary quantum logic is
the most prominent one. Muthukrishnan and Stroud [3]
showed realization of d-valued (d > 2) quantum gates using
liquid ion-trap. Synthesis techniques of ternary reversible
quantum adder subtractor. encoder and decoder, multiplexer
and demultiplexer are proposed recently in [4-6].

In this paper, we propose reversible realization of a ternary
barrel shifter using macro-level ternary Feynman and
Modified Fredkin Gates (MFG). Though. binary reversible
barrel shifter has been proposed recently [7], but the ternary
reversible barrel shifter i1s first ever proposed in this paper.

Rest of the paper is organized as follows: Section 2 provides
the necessary background study on ternary quantum logic
with temmary reversible logic gates. Reversible binary barrel
shifter 1s presented in Section 3. Design of Temary Barrel
Shifter is proposed in Section 4. Section 5 gives
performance evolution of the propounded circuits using

different parameters. Finally, Section 6 draws conclusion of

the paper.

2. Ternary Logic and Ternary Gates

This section presents the necessary background and
preliminaries in order to help the reader to comprehend the
newly proposed architecture that will be presented n
Section 4.

2.1. Ternary Logic

A ternary, three-valued or trivalent logic or 3VL is a
generalization of multi-valued logic with three truth values
indicating true, false and neither true nor false [10]. To
define a ternary reversible circuit, let B = {0, 1, 2}, where B
1s a three valued vector. A temary logic circuit fwith n input
variables B,,.....B,. and # output variables. Q,,....Q,. is
denoted by f: B"—>B", where (B,....B ) €B" is the

input vector and (Q],...‘Q”> € B" is the output vector. A

ternary logic circuit is reversible if it has one-to-one and
onto (bijection) mapping between inputs and outputs [10],

Ternary logic values of 0, |, and 2 are represented by a set
of distinguishable different states of a qutrit (quantum
ternary digit), which can be a photon’s polarizations or an
elementary particle’s spins. Qutrit states are represented
by‘0>. ‘1) and ‘2) [4]. Temary logic includes Ternary

Galois Field (TGF) operations: addition and multiplication
and they are basically modulo 3 operations [11].

2.2 Ancilla Bit and Garbage Output

An Ancilla bit [9] is an auxiliary input constant bit needed
in the circuit other than the function input bits. On the other
hand, Garbage Outputs are the bits of a Reversible Gate (or
Reversible Circuit) that are not used as output or input to
any other gate (or circuit). Garbage Qutputs are required
only to remain the one-to-one mapping between input and
output vector. Both the terminologies play very important
role in Reversible Synthesis as thev are considered as two
prime parameters of reversible circuit minimization.

2.3 Ternary Feynman Gate

A 2%2 temary Feynman gate is shown in Fig. 1. Here A is
the controlling input and B is the controlled input. The
output P is equal to the input A and the output Q is GF3 sum
of A and B. If B = 0, then Q = A, then the ternary Feynman
gate acts as a copying gate [11]. Galois Field 3 (GF3)
consists of the set of elements T = {0, 1, 2} and two basic
binary operations — addition and multiplication. Readers
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should note that GF3 operations are nothing but modulo 3
operations [4].

2.4 Modified Fredkin Gate (MFG)

Fredkin Gate (FG) is the fundamental concept in reversible
and quantum computing [12]. Fredkin gate 1s a binary gate,
and MVL counterpart of this gate was mtroduced in [13],
which is called by Modified Fredkin Gate (MFG). Multi-
value logic (MVL) is defined as a non-binary logic and
involves the switching between more than 2 states. We will
assume that multi-value logic devices will be limited to 2
inputs/single output functions. A ternary or 3-value logic
function is one that has two inputs which can assume three
states (say 0, | and 2) and generates one output signal that
can have one of these three states [15]. Fig. 2 shows the
block diagram of Modified Fredkin Gate (MFG).

A——— =

B —éﬁ—@:;lm’}

Fig. 1. Modified Fredkin Gate [13

A P=A
B >_ Q=B
C R=CifA<BelseR=D
D S=DifA<BelseS=C

Fig. 2: 2*2 ternary Feynman gate [11]

2.5 Barrel Shifter

A barrel shifter is a combinational logic circuit. which
receives an n-bit input data, k-bit, shift value and will
produce an n-bit shifted result, ((n, k) barrel shifter). Barrel
shifters can perform multi-bit shifts in a single cycle [7].
There are two architectural layouts for shifters - array
shifters and logarithmic shifters [14]. A logarithmic shifter
with n-bit data value is divided into log, n stages. Each bit

of the shift value is sent to a different stage of the shifter.
Each stage handles a single, power-of-two shift. The input
data will be shifted or not shifted by each of the stages [14].

3. Binary Reversible Barrel Shifter

In this section we discuss about the reversible design of a
binary barrel shifter [7, 9], as the design in [9] is the most
recent one, we will show the diagram of that design.
Feynman and Fredkin gates are used in order to produce
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fan-outs. According to this design, reversible (£, 2 hame
shifter [9] requires 6 Fredkin gates and Feynman Gates s
most importantly, the design works only with binary mputs
(shown in Fig. 3).
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Fig. 3: Existing reversible (4, 2) barrel shifter [9]

4. Ternary Reversible Barrel Shifter: The Proposed
Architecture

In order to develop the proposed design, we have closely
examined the architecture and work flow of the existing
binary one [7]. A traditional barrel shifter with &-bit shift
value uses 2° copies of each input data. We are considering
an example of a Ternary (4, 2) Reversible Barrel Shifter to
comprehend the idea clearly. The proposed circuit contains
Feynman gates in order to produce 2 copies of each mput
data to act as mputs for the next level, as shown in Fig. 4.
We have used constant 0 and | for left shift and right shift,
respectively.

The next stage consists of two stages of MFGs for shifting
operation. First stage of termary barrel shifter with MFGs 1s
shown in Fig. 5. Temary MFG is a four input gate (Fig. 2).
The constant select input acts as input A. the two mputs
from the upper layer act as B and C. Now the last input D 1s
provided by constant input 0 and for this purpose we need
four more Feynman gates. The outputs from the first level
are propagated to the next stage. In the second stage, we use
four MFGs (Fig. 6) to produce the desired shifted result.
The outputs from the upper stage are connected to a layer of
four MFGs to get a unique data output pin, regardless of
shifting direction left/right (Fig. 7). We provided constant
mputs to the final level of MFGs. For right shift constant (0,
1) combination is used as the first two inputs, for left shift it
15 otherwise. So, the final and complete architecture of
ternary reversible (4. 2) barrel shifter with four bits as data
value and 2-bit shift value 1s depicted in Fig. 8. Next we
show a general structure of (n, &) termnary barrel shifter in
Fig. 9.
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Fig. 8: Ternary Reversible (4, 2) Barrel Shifter

5. Performance Evaluation

In this paper, we have deduced several equations to
anticipate the lower bounds of the basic gates, garbage bits
and ancilla bits [9] for estimating the performance of the
proposed circuit. [nductive proofs of these equations are
given below.

Theorem 5.1: A Ternary Reversible (n, k) Barrel Shifter can

;
be realized with at least n ><(2A' +k - ])—|—;rx22“ gates,

=]
where n is data value and k is shift amount.
Proof: Theoretically, each bit of the operand should be
copied 2* times for their future usage, but can avoid single
gate, as we can use both outputs of the last column of
Feynman Gates. This copy is required for every n bit, and
hence, total number of Feynman gates required to copy n
bits is 7 x (2"' - 1). For generating Constant input 0, (which
can be avoided using individual 0°s), we required more
nx(k—l) Feynman Gates. As a result, total number of
Feynman gates

required in the proposed design is:

."Ix(2f‘ = 1)—%—H><(/(—I). For performing shifting operations,
we require k levels of MFGs. For each i” level (1 i f().
we require 1 x 2" MFGs. So, total number of MFGs for a
ternary (n, k) barrel shifter to perform bit shifting operations

k
. k=i o . .
1SN X Z 2% Finally, to get the output of the shifter
i=1

from a unique pin, we require n more MFGs. As a result,
total number of MFGs required incthe proposed design is:

k
k=i
anZ "4n.
i=l

Hence, the total number of gates to build the proposed
circuit is:

i
nx (2"' — l)+ nx(k—1)+nx ZZA" Y

i=l

=l
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Fig. 9: Ternary Reversible (n, k) Barrel Shifter

Example 5.1: Consider a (4, 2) temary barrel shifter. In this
case, the  number of  Feynman Gates is

nx(2f ~1)=4x(2? -1)

input 0, we

12 . For generating constant
nx(!’c~l):4x(2_1):4

Feynman Gates which sums up the number of Feynman
Gates to 16. For performing shifting operation, we require

require

k
H X Z 2T = 4><[ i +23’3]: 12 MFGs and to get
i=1

the output from a unique pin, we further require 4 more
MFGs. So, in total, we need 16 MFGs (Fig. 8).

Theorem 5.2: Let Ty be the total number of garbage
outputs produced by a Ternary Reversible (n, k) Barrel

k-l ]
Shifter, then T, = H[Z?; x 25940 |4 o + 1)+ k, where
i=1 J

n is data value and k is shift amount

Proof: In a ternary reversible (#, k) barrel shifter, we have k
levels of MFGs. For each i” level (1 <i< (k - 1)) we get

n(3>< ZA'_(H'))ﬁ-l garbage bits. For /" level, where i=£,

we have (n + l)garbage outputs. Finally, for the last level
of MFGs, which is used for getting a unique output pin, we
have (n + 2)number of garbage bits. Therefore, the total
number of garbage bits produced by a (n, k) barrel shifter is:

el
TGO=n{Z?jx2"““*'ii+(k—1)+(n+1)+(n+2)
i=]

k-1
= n[z 3x 2*-(“‘)} +k+2n+2

i=l1

P
—n[ZBxZ*'(”')}+2'(n+l)+k ]
i=1
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Example 5.2: Consider a (4, 2) temary barrel shifter with
two shift levels. The first level (i=/) makes

,{3X2H'+!))+1:4(3X22~41+13)+1:13 garbage bits. Similarly,
for i level, where i=2, we have (n + 1) = 5 garbage bits.
Finally, the last level produces (n + 2) = ( garbage bits. So
the total number of garbage bits for this circuit 1s equal to
24(Fig. 8).

According to the derived formula, garbage outputs of a
ternary reversible barrel shifter for different data and shift
values are tabulated in Table. 1. Fig. 10 extensively shows
the growth of garbage outputs with the increase of n and k.

Table 1: GO of Ternary (1, k) Barrel Shifter

Tania Ferdous and Ahsan Rasa Chowdings

The number of ancilla bits [9] for a reversible temary = &

barrel shifter, is defined aSsz nx2'-m+2. P
2

example, the number of ancilla bits for a (4. 2) barrel sinfier

iy =

is: %X 4% 22 — 4+ 72 =27 .Using the derived formula,

numbers of ancilla bits for ternary reversible barrel shifier o8
different data and shift values are tabularized i Table. 2
Fig. 11 shows the growth of ancilla bits with the increase of
n and k. The values of these matrices are very close and
hence very little difference can be found between these two

figures.

Table 2: Ancilla Bits of Ternary (n, k) Barrel Shifter

n=4

n=16

( n=4 | n=8 | n=16 | n=32 | n=64 n=4 | n=8 | n=16 | n=32 | n=64
k=2 | 24 | 44 84 164 | 324 k=2 | 22 | 42 | 82 | 162 | 322
k=3 93 | 181 | 357 | 709 =3 ] 90 | 178 | 354 | 706
k= 374 | 742 | 1478 k=4 370 | 732 | 1474
k=5 1511 | 3015 =5 1506 | 3010

J: 6088 | k=6 608ﬁ

mk=2
k=3
% k=4
B k=5
k=6

n=64

n=32

Fig. 10: Garbage outputs for different # and k values
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Fig. 11: Growth of Ancilla Bits for Different # and k values
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