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Abstract

$ith the advtnt ol high throughput DNA microarrar technology, the field of functional genomics has been
revolutionized by thr large amounf of gen€ erpression data generated in recent ycars. The analysis of these large-
sctle data has become very useful for investigating gen€ lunctions and the int€ractioos among the genes. Horrever.
thcre rre few known data analvsis techniques c!prble of fully exploiting this new class of data. ln this research work,
we have prcsented a multi-obj€ctive evolutionarr- straregv for ellicientlv attaining the skeletal structure ot the
biomolec lar netltorks and estinrating the effective regulatory paramcters liom the genc expression time-series data
using the linear time-variant lbrmalism. Here, Elilist Dilfercntinl Erolution fot Mt ti-objective Optiuiztttion, 

^versatile, robust and ell-known Multi-Objective Evolutionarv Algorithm has been used. The suitability of the
proposed method has been vcrified in gene net\rork reconstruction experimcnts. varying the noise levrl present in
8en€ expression proliles. And finally, we ha!e applied the nrethodology lbr anahzing the real expression dataset of
SOS DNA repair system in Escherichia coli and succeeded to reconstrrrct the network ol some k€y requlators.

Ke]\rordsi Cene Regulatory Nctwork, Re\crse l-nginecring.
\lulti objectivc Optimization

1,Introduction

Gette Regulalorl' Networ&.r- /CRNs/ ca:r be defined as the
functioning circLritry in living organisms at tlre gene level
u,hich are abstract mapping of the mo:c complicated
biochenrical networks and represcnt thc reglllatory
relationships among genes in a cellular system.

By using gene expresslon arravs. it is possible to measure
mf;.NA expression levels of thousands of gencs
simultaneously. In previous studies [1, 2.3.4. 5,6, 7]. the
proper analysis of these gene expression data in a time
series paradigm have been proved very Lrseful for
investigati]lg regulatory interactions among genes. The task
is challenging because of llre noise presented in the
nricroanay data and gene net\\'orks are typically hidden
\\'ithin the tlrousands of genes found in the genomes.
-fherefore. identifying gene regulatory networks fronr gene-
cxpression data is now an extremel! actrre research field in
System Biology | 11.

\4any different methods for infcnrng bio-nroleculur
rlelworks from time-series microanal- data havc been
ploposed in reccnt literaturc, such as Boolean Nenror-k l2],
Lineal Model [3], Bayesian Nenvork [.1]. NeLual Network
l5l. Differential Equations 16l and models rncluding
stochastic cornponents on the molecular lerel l7]. The
common problem relaled with all of these modcls rs scarclty
of data, that is the number of genes far exceeds thc numbcr
of time poirts fot which data are arcileble. nraking the
problern ofinferring CRN structure a difficult and ill posed
one.

Two major challeiges in reconstructing GR\s are 1)

detecting the sparse topological architecture of biological

networks and 2) estimating the regulatol-y patameters fiom a

limited amount of gene expression data conlLpted with a

significant level of noisc. To cope witlr these problems, wc
have developed an Evolutionary Algorithm (EA) based

inference method using )inear time vatiant formalism.
Among several linear formalisms. the linear time-\,ariant
model is of paticular lnterest becaLrse of its capability of
discovenng non-linear interactions among genes (a very
common phenoncnon in biochemical networks) even rvith

noisy gene expression proliles requiring mLrch less tintc
than thc non-linear fbrmalisms. A rn ulli-obj ective
evolutionar.y algorithm (elitist DEMO) has been introduced
for optimizing the parameters of rcgulation in gene

networks with the aim of providing a method that can fulfill
the experimental requirements. The primary contributions of
tht: paper ar < a< follou s.

. desigt of a new objective function, for identif-ving
the skelctal network structure more ptecisely,

o development of an efficient, elfective, and
generalized algo thm that does not require any
user-defi ned parameter,

. vedficatiorl of the proposed method by
reconstructing GRNs from both synthetic and real
gene expression data to shou' its efficacy in
estimating the conect network architecture and the
actual reglrlatory paranreter values.

Moreover, the results of various expe ments detnolsh-ate
that our proposed method requires much less time compared
to other existing methods for reconstructing GRN and
estimating regulator-y parametels.
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2. Linear Time-Variant Modcl for Cene Nctllork
'fhe biochemical systerns are inherently non-linear in nature.

If the model is assumed as linear tinre-variallt. then the total

regulatory input to gene-1, can be expressed as.

-lLZ(Lt )W, {l)X,(rr.vi r'r
j=0

\\herc, Zi|) is the total tegulatory inprt to gene-r. ,Y, is the

expression level of gene-i at time /. t/ is a nlatrix of tinle-

varyirrg coefiicients providing information about the

relationships among genes and can be used to constluct

underlying GRN. The weight cocfficient. ttl, r indrcates the

type arld strer'rgth of the influence of gene-7 on gene-i. Since

t/,,/t/ is a time-varying function, it can be uritten as a flnite
sum of Fourier Senes l8l as follows:

W,., = o,.,sin(ot,t + g,,t) + P'.t,V'.t (2)

Here, Ar.i. ,6,., d,,,, and u, ate the constants to be

determined, the lineal pal1 of the iDteractions is represented

by 6,.. and the sinusoidal term approximates any non-linear

terms in the interactions. Thus the linear timc-va ani model

carr be defined b1 thc p.rrameter set. '( j : ,

The response of gene-i to the regulatory inputs is the

cxpr.ession )evel of gene-i at time / + l. i.e, Xi(l + Lr' For

biological realism, the value of Xift + 1) is obtained b)
ngrmalizing Z, using a sigmoid squashing function:

I
X,(l +l)=- r.tr

l-c "'
For r€constructing a gene net\\'ork modeled by linear time-

variant system, usually the inference method tries lo
estimate N(3N -f l) parameters that can min]rc lhe

experimentally obtained gene expression data.

3. Model Evaluation Criteria

3.1 Generic Fitness Evaluation Function

IIre generic fimecs eralualnon fitnctlon. Ved, J./r,d'id
Error (MSE) is used to find the gene regulatory network that

best fits the experimental data. The smaller the ralue of
MSE. the better the match between obsewed and calculated

erpression dyramrcs. Ihe bener llle appro\rmalion.

(1)

Here, Il''ll! represents the experimentally observed

expression level of gene-i at time t in the i:r: data set

Whereas, I ifi I t , is the numerically calculated expression

level of gene-i, at sampiing time 1 in the same data set which

is acquired by solving Equations (2) and (3). Here M is the

number of experimental data sets used, I is the number of

Sumon Ahmed. Md. Mahmudul Hasan and Nasimul Nonran

sampling timc points and N represerlts the nunrber of gcnes

in the regulatory system.

3.2 Attaining the Skeletal Network Structures

ln r biologrcal \)slem !er) [eu genes ot proteins inleract
with a particular gene. One ofthc major djfficulties of linear
time-variant nodel is that the large patameter set makes the
detection of the underlying skeletal system architecture
difficult. Because of the high degree of freedom of the

model. there erist nany local minima in the search space

that can also mimic the time courses vety closely.
l-herefore. ihe method may get stuck on some locally
optimum solution and fail to obtain the true skeletal networ.k

structure.

Here s e har e designed a new fitness function lor genelating

true skeletal network structule ftonr cxpcimcntal tinre
courses end used this fitness functron as thc second

objectire in our nrulti-objective inference algorithm. lhe
ralue of thrs fittress function is calculated by summing up

the number regLrlatory iiputs of all the genes in the system.

The smaller the value ofthis fitness fLLnction. the sparser the
underlyrng skeletal network structLn-e, closer approximation
of the biological reality. Thus for each set of parameters

representing regulation networks in linear tlmc-variailt
slsrem. the fitness function for obtaining gJobaily optimal
sene network structure has becn defined as:

N/'t {.),rJ t1,
i=l

Here. /, is the number ofregulatory inputs to gene-r and N is

rhe number ofgenes in ti're regLllatory systen'1.

.1. Inference Method

The aim of search is to find a set of pammeters \ct, p, 10, 
('tl

that minimizes both I and f. Steps of tlre proposed

algonthm are similar as in NSCA-ll [9] which are described

below:

1) Generate initial populatiqn randomly P/

2) Use the mutation and crossover operation of
DE [10] to generate a new offspring

population 9/,
3) Generate a combined populalion R,: Pt ) Q,.

4) Evaluate the individuals of R, using Equatiorr

(4) and (5).

Conduct a fast non-dominated softing [9] to

order the individuals olR, into non-dominated

fronts -Fr, .. F1, where the members of one

lront are non-dominated by each other, and the

best non-domtnated solutions are in F,,.

The next generation P,,r is filled beginning

witl.r members of F, and subsequently addmg

the members of foilowing lionts. If not all

members of a front can be added because

)'

(t)k,i

)

X

(t"rpk,i

(t)

X

xi1r r r/
n - tttl' 424t

l= r=l i=l \

5)

6)
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.,ihenvlse NP (nun.rber of population) would
x erceeded, it is decided based on crowding
distance [9] which solutions should be kept.

- r Il the fitness values (i.e.. f1 and f2) of rhe best
compronrise individual does not improve for
G,,, consecutive generations, theu the nutatron
operation is evoked, which mutates all the
other ildividuals in the curent generation.

The r.r and / parameters ol an individual are

mutated by adding random numbers drawr.r

from Gaussian distribution with mean 1.. = 0

and standard deviation uo and o9 ,

respectively, where the d and u parameters

are mutated using random numbers drawn
lrom a distribution with nean lr^ = 0 and

standard deviation r,:.
8) Il the termination criterion is not net then the

above procedure is repeated fron step 2.

Tlre output generated by any MOEA js the non-dominated
set of solutions known as the pareto-optinal solutions.
However the decision maker may lrave imprecise or fuzzy
goals for each objective functjon. Thus, upon having the
Pareto-optimal set, we have used, a fuzzy based mechanism
dqscribed in I I 1], for extracting a Pareto-optimal solution as
thc best comprontise solution.

5, Reconstruction Experiments and Results

To see how successfully the proposed metlrod can
reconstruct the network topology and estimate the
regulatory parameters, we have first applied it on artificial
target networks and then for analyzing real microanay time-
series data.

5.1 Artificial Network Inference

The target has been generated according to equation (6).

\ { / r ' .\ { I l . t l - n t.t R-1.-R) {b)

where N indicates the number of nodes in the network,
connectivity i is the maximum number of inputs per gene
and the noise percentage R indicates the maximum amount
of randomly added noise to the expression level for
generating the expression pattem from the target network
l1 21.

The genelated aiificial network of 5 genes is presented in
Figure 1. ln all the figures, rve have majntained the
convention that * represents actjvatiqn and a - represents
suppression. TIre network contains both positive and
negative regLLlations along with feedback loop. We
conducted l0 runs for each condition using 10 sets of data
and the result is shown in Figure 2. The time required for
reconstructing 5-gene target network using 10 sets of data,

is approximately 7 minutes on a lntel(R)Core(TM)2Duo
2.80 CHz.2CB RAM - personal compurer. The average
Sensitirity SN, Specijicity ,SP and MSE are given in the
Table l.

. 1 .698

I 698

l1{{?

.t 2685

-t 6897

(a)

/J'-l 39

-t 7'l

"1.65
0 .9'7

(b)

Fig. 2: Estimated Networks lrom (a) noise-free and (b) 5% noisy
gene expression profiles. Dashed line indicates false positive

regulations.

Fig. l: Target Network.

2.8560

L6t85



The sensitivity and specificity is dcfined
equations.
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by follou ing Table 2: Estimrted regulations lbr SOS DNA repair s)stcm

C.nr Prrdictcd llesuhrionr

wlrere lP . TN . FP and FN denote Tnie Positive. llue
Ncgative, False Positive and False Negative, respectrrely.

Table 1: ,SN, ,9P and MSE of the target netrvork tbr
noise-free and 5%o nois)' time-series data

.tN .sP

sp= 7P 
sru

TP a. FN' ZN +FN
u\rD - uvrD. lex/\ - u\rD. Lr\rA

- u\,]D

u\rD le\A. l€xA - lclA. llrnuD

- lcxA.tecr\ . lexA

le\A - ufruD.,ccA - umut)

l.\.\ - recA. LrmuD - recA. rccA

' recr\. polB "' rccA

:c\A - u\rA. recA - uvrA. uvr^ .-

u\TA

Ie\^- pol8. uvrA - polB1.0
t0

1.0
0.96

MSE

L l'1. 15. t6l

lr4. 15. lrl

16. r. r8l

Lr,1 r7l

l'1. 16. l9l

lr6. relNoise-flce
5% Noisy

l0.rr
1.ll

,1,^-?/"N

5.2 Analysis of Real Microarray Data

We have applied the algorithm to analyze the well-known
SOS DNA repair netrvork in E. coli as shown in f'igtttc 3

Cenes are in lorvetcase and Ploteins are ill uppercase letter'.

DNA D1'rrgc
,1,

Sr[glc slraqdcd DNA
,l-

1,. - -----''--- _ fe.;

The computational tinre lor the algofithm itl predicting thc

SOS repair nctwork '35 minrtlcs ,)rr J

lntel( R)Core(TM)2Duo 2.80 GHz, 2CB RAM - personal

compurer *hich is much shofier than some ptevious *orks.
\\'hereas the S{ree based system [20] running on the

compurer svstem Athlon Mp2E00+ took aboLrt 35 houi for
inferring this network. The method proposed by Cardner in

IE] rook approximately lhottt for reconstrLrcting this
nct\\ ork.

6. Conclusion

ln this research work, an inference methodology has been

dereloped fo| addressing the challenge of reconstructing

nrolecular pathways of gene regulation fiom genc

erpression time-series data. The pelfomance of thc

proposed lramervork makes it more applicablc 10 thc

problcm of reconstnlcting gene regtllatory networks. Ihe

method has been verified by both synthetic and real

expression data and it is easily extendible on larger

nel$orks. Fot s)Tthetic network, the method finds the trlle

regulations elen in the prcsence of 570 noise. ln actual SOS

D\.-\ repair nelwork data, the proposed method outperforrns

sonle other methods [18,20] as it finds the regtrlations in

!-onparativcly faster execution tirrc. For dealing rvith the

problem ofhigh dinensionality and for parallel execution of
algonthm, the original rnodel of this research rvork may be

decoupled into N sub ptoblems, where N is thc ntlmber of
genes in the system.
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