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ABSTRACT 

Classification of EEG signal for Brain-Computer Interface (BCI) applications consists of three stages: Pre-

processing; Feature extraction and Classification. There are different methods implemented in these stages found in 

existing literature. However, the performance of the methods has been measured on different datasets which made 

the results incomparable to each other. To address this problem, in this paper, different combination of feature 

extraction and classification methods has been implemented to classify a well known dataset (dataset 2A, BCI 

Competition IV) so that a comparative analysis can be made based on identical platform to find out the best 

combination of methods. In the pre-processing step, the EEG data was band-pass filtered to remove the artifacts and 

Common Spatial Pattern (CSP) was applied to increase the discriminativity of the data. Two types of features: Time 

Domain Parameters (TDP) and Adaptive Auto-Regressive (AAR) parameters were extracted from the pre-processed 

EEG signal. The features were classified using two types of classifiers: Linear Discriminant Analysis (LDA) and 

Support Vector Machine (SVM). A comparative analysis has been conducted to identify the best combination of 

feature and classifier. The analysis reveals that, TDP features classified using LDA classifier provides best 

performance and hence demands application in real time BCI system. 
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1.  Introduction 

Brain-Computer Interface (BCI) provides the only way of 

communication for the people affected by motor 

disabilities. More formally, BCI is a communication system 

that doesn„t require any peripheral muscular activity. 

Indeed, BCI systems enable a subject to send commands to 

an electronic device only by means of brain activity [1]. 

Not only as the communication tool for the people with 

motor disabilities, BCIs also have a wide range of other 

applications. Some of these are videogames and virtual 

reality, creative expression, access to internet etc [2]. 

In order to control through BCI, the user must produce 

different brain activity patterns that will be identified by the 

system and translated into commands. There is a variety of 

invasive and non-invasive techniques to measure the brain 

activity. The non-invasive techniques can be EEG, MEG, 

PET or fMRI. The invasive technique can be ECoG [3]. 

However, among all of the invasive and non-invasive 

techniques, due to its easy implementation facility, high 

time resolution, real time availability and price constraints, 

most of the BCI systems use EEG as the measurement 

technique of brain activity [4]. 

To identify the measured brain activity patterns, a BCI 

system relies on an identification algorithm. The goal of 

this identification algorithm is to automatically estimate the 

class of data. Usually, the identification algorithm consists 

of three stages as shown in Fig 1: Pre-processing (enhance 

the separability of classes), Feature extraction (extract 

features of the patterns) and classification (classify the 

features to identify the classes). The performance of the 

BCI system readily depends on the methods implemented in 

these stages. Hence, selection of best algorithms in each of 

these stages is very important in BCI design. 

 

Fig. 1: Structure of a BCI system based on EEG 

There are different pre-processing methods for signal 

enhancement in BCI designs found in literature such as 

common average referencing (CAR), surface laplacian (SL), 

independent component analysis (ICA), common spatial 

patterns (CSP) and principle component analysis (PCA) [5]. 

CSP enhance the spatial resolution of EEG signals and hence 

the separability between classes can be increased. Also, 

selection of optimal spatial filter can reduced the 

dimensionality of EEG data [6].  

One of the important stages in BCI design is the selection of 

features used to classify the EEG signal. There are different 

types of features used in BCI systems based on neurological 

mechanisms used in those systems. However, BCI systems 

based on sensorimotor activities (ERD/ERS) uses spectral 

parameters (e.g. band power), auto-regressive parameters 

(AR), adaptive-auto-regressive (AAR) parameters, multivariate 

AAR, time-frequency (TF) features, wavelet packets, time 

domain parameters etc. as features [5]. 
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However, the most important stage of a BCI design is the 

selection of classification algorithm. There is variety of 

classifiers found in literature to classify the EEG data for 

BCI systems. Some of them are different variations of 

neural-networks (NN), LDA, Quadratic discriminant 

analysis (QDA), support vector machine (SVM), k-nearest 

neighborhood (kNN), Bayesian classifiers etc. It was found 

in the literature that different classifiers performed well 

with different features [5]. 

However, one problem with previous research works 

concerning BCI systems is that very often the performance 

of the methods are measured using different procedures or 

different EEG data sets. This makes the obtained results 

incomparable to each other. To address this problem, in this 

paper, different methods of pre-processing, feature 

extraction and classification was implemented to 

automatically classify four class motor imagery 

(imagination of left hand, right hand, both feet and tongue 

movement) EEG signal. Then, the best combination of 

methods of the three stages was identified as the best 

algorithm according to a comparative analysis between 

them.                   

2.  Materials and Methods 

2.1 Data Set 

The BCI data used in this research work is the Dataset 2a of 

BCI Competition IV. The data set consists of EEG data 

from 9 subjects while they were performing four different 

motor imagery tasks [7]: 

1. Movement imaginary of left hand (Class 1) 

2. Movement imaginary of right hand (Class 2) 

3. Movement imaginary of both feet (Class 3) 

4. Movement imaginary of tongue (Class 4) 

There were two sessions for recording data from each 

subject. These sessions were taken place at different days. 

Each session consists of 6 runs and they are separated by 

short breaks. Each run consists of 48 trials (12 for each 

class. Hence, 4 × 12 = 48 trials). Hence, in each session 

there are 72 trials for each class and 288 trials in total. 

There are 22 EEG channels in the data set. Also, 3 

monopolar EOG channel are included to deal with eye 

movement artifacts. The duration of each trial is 7.5s with 

250 Hz sampling rate. Hence, the dimension of the raw 

dataset for each trial is 25 channels with 1875 data points. 

The electrode montage for EEG and EOG channels has 

been given in Fig 2. 

According to the rules of BCI Competition IV, data from 

one session (for each subject) should be used as training set 

and other session has to be used as test set. In this research 

work, the test set was kept completely hidden until the final 

evaluation experiment. All the analysis was done using the 

training set. 

 

Fig. 2: (a) Electrode montage for EEG channels (b) Electrode 

montage for EOG channels 

2.2 Pre-processing 

At first, the EEG signal was pre-processed to remove the 

EOG artifacts. To increase the separability between classes 

and to reduce the dimensionality of the data, spatial filtering 

was implemented in this step. 

2.2.1 Band-pass filtering to remove EOG artifacts  

During the recording of dataset used in this research, the 

non-physiological artifact such as line frequency noise was 

suppressed using a notch filter of 50 Hz. For the purpose of 

removing the EOG artifacts (due to eye blinking or rolling) 

EOG data of three channels is provided also. However, 

there may be EMG artifacts present due to the movement of 

head, body or facial muscles. There is no information 

provided about EMG artifacts in the dataset. EOG artifacts 

have wide frequency range, but they are maximal in 0-4Hz 

range. EMG artifacts are maximal in the range above 30 Hz 

[8]. However, the neurological phenomenon utilized in this 

research is Event Related De-synchronization/Synchronization 

(ERD/ERS) which is prominent in   (8-13 Hz) and   (13-

30 Hz) band. Hence, there is no overlapping of artifacts 

with the neurological phenomenon. Therefore, band-pass 

filtering can be an efficient tool to remove the artifacts. 

Hence, the data was filtered using a fifth order digital 

Butterworth filter with the pass-band of 7-30 Hz.  

After, band-pass filtering, as there is no EOG artifacts 

presents in the data, the 3 EOG channels was removed and 

hence the dimensionality has been reduced to 22 channels 

with 1875 data points for each trial. 

2.2.2 Common Spatial Pattern (CSP) 

To increase the discriminativity between classes and to 

reduce dimensionality of the data Common Spatial Pattern 

(CSP) was implemented on the band-pass filtered EEG 

data. Also, as the EOG artifacts were removed, the EOG 

channels were also removed from the data. 

CSP is a technique to analyze multi-channel EEG data 

based on recordings from two or more than two classes. It 

maximizes the variance of the spatially filtered signal under 

one class and minimizes it for other class. Since variance of 
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band pass filtered signals is equal to the band power, CSP 

increases the discrimination of mental states that are 

characterized by ERD/ERS [9]. 

Let,           is the multichannel EEG data of N 

channels and T sample points with   {     } is the set of 

classes. CSP finds a linear transformation        with 

    such that, 

                              (1) 

When    , there is no reduction of dimensionality. Only 

the discriminativity will be increased. On the other hand, 

for      dimensionality reduction is also provided along 

with increased discrimination between classes. Columns of  

  is represented by       where,              . 

Each columns of   is called a spatial filter. 

However, to calculate the transformation matrix  , two 

covariance matrices are estimated for two classes. Then 

optimized value of   is computed by simultaneous 

diagonalization of the two covariance matrices.  

However, the simultaneous diagonalization problem can be 

solved using generalized eigenvalue problem and the 

dimensionality reduction can be implemented by selecting 

the spatial filters with smallest/largest eigenvalues. 

As the dataset used in this research indicates the 

implementation of multiclass CSP, Joint Approximate 

Diagonalization (JAD) was used to solve the multiclass 

problem [9].  

However, to implement CSP along with dimensionality 

reduction scheme, in this paper, L was taken to 8 and hence, 

the dimensionality of the processed dataset reduced to 8 

spatial filtered channels with 1875 data points. 

2.3 Feature extraction 

In this research, two different types of features were 

extracted from the pre-processed EEG data. One of them is 

time domain feature; another is based on time series 

analysis. These are: Time Domain Parameters (TDP) and 

Adaptive Auto-Regressive parameters (AAR). 

These features for different classes show different 

discriminative properties which is useful for a classifier (at 

the next step) to classify the data. 

2.3.1 Time Domain Parameters (TDP) 

Time Domain Parameters (TDP) was first introduced in 

[10], and considered as more generalized representation of 

Hjorth Parameters. TDPs are obtained by calculating the 

variances of derivatives of the signal with different order. 

For each order of derivatives a TDP can be obtained as, 

          (
      

   
)             (2) 

However, for better performance, the parameters are 

smoothed using an IIR filter by implementing the following 

expression. 

                           (3) 

Where,   is called update co-efficient and has an important 

effect in the performance of TDP as features in BCI. 

However, it has been shown in result section that, the 

optimal value of k is 5. Hence, the size of the feature vector 

is 40 for TDP features. 

2.3.2 Adaptive Auto-Regressive (AAR) parameters 

The AAR method is appropriate for on-line and single trial 

analysis of the time varying EEG spectrum. When there is 

no averaging of an ensemble of recordings, AAR method is 

very useful to extract features from EEG signal for BCI 

classifiers [11]. 

An Auto-Regressive model is useful for describing the 

stochastic behavior of an EEG time series. This can be 

described as, 

                        (4) 

with,     {    
 } (5) 

Where,    is a zero-mean-Gaussian-noise process with 

variance   
 . The index   is an integer number and 

describes discrete, equidistance time points. Here,   is the 

model order and AR parameters             of an AR 

model can be used as features. 

However, to consider non-stationarity of the EEG signal, 

the AR parameters are allowed to vary in time and hence 

these time-varying parameters are known as AAR 

parameters. Hence the model is changed to represent by 

following equation. 

                              (6) 

The AAR parameters were estimated using scalar Kalman 

filtering. 

However, it has been shown in result section that, the 

optimal value of AAR model order is 6 and hence the size 

of the feature vector is 48 for AAR features. 

2.4 Classification 

To classify each trial of the multichannel EEG data or in 

other words predicting class label for each trial, the 

extracted features were fed to a classifier. The performance 

of a BCI system significantly depends on which type of 

classifier is used.  In this research, two different types of 

classifiers were used to classify the EEG features extracted. 

These are: Linear Discriminant Analysis (LDA) and 

Support Vector Machine (SVM). 

2.4.1 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a generalization of 

Fisher's linear discriminant, and used in statistics, pattern 

recognition and machine learning to find a linear 

combination of features that characterizes or separates two 

or more classes of objects or events [12]. 

Let,   [          ]
  is the feature vector of EEG data 

of M different classes represented by the set   
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{          }. Then, the discriminant functions are 

represented as, 

                     
       (7) 

Where,           

The classification is done as:  

If,        ;          ; Then,     ; Otherwise, 

     

Then training of the classifier is done using one-vs-rest 

scheme by calculating the optimal value of the weight 

vector   using Equation 8 for the discriminant function 

expressed in Equation 7. 

    ̂    ̅   ̅  
        

    (8) 

Where,  ̅ = Mean value of the data of the class for which   

to be calculated;  ̅ = Mean value of the data for rest of the 

classes;         = pooled covariance matrix of two classes; 

2.4.2 Support Vector Machine (SVM) 

SVM classifies linearly separable two class data by 

constructing an optimal hyperplane so that the margin of 

separation between the two classes is maximized [13]. 

Let,   [         ]
  is the feature vector of EEG data 

for two different classes    and    which are linearly 

separable. Then, the mathematical representation of the 

hyperplane separating the two classes can be represented as, 

        (9) 

Where,   is the weight vector and   is the bias. Then, for a 

given weight vector   bias  , the separation between the 

closest data point (known as support vector) and the 

hyperplane representing by Equation 9 is called the margin 

of separation, . The training of SVM is nothing but finding 

an optimal value of   and bias   so that   is maximized. 

This is done by solving an optimization problem by the 

method of Lagrange multipliers. However, for the data 

which are not linearly separable, a non-linear mapping to 

higher dimensional space is necessary. To execute the non-

linear mapping, inner product kernels are used in SVM. 

These kernels are of different types such as polynomial 

kernel, radial-basis function (RBF) kernel etc. In this 

research, RBF kernel was used which can be expressed as, 

            ( 
 

   
‖    ‖

 ) (10) 

The parameter   is called kernel width and it has a 

significant effect on the performance of the classifier. 

However, as the EEG data classified in this research 

consists of more than two classes, one-vs-one scheme of 

SVM was implemented [13]. 

2.5 Evaluation 

To analyze the performance of BCI systems, some 

evaluation criteria must be applied. The most popular is 

accuracy. However, because of some strict prerequisites, 

accuracy is not always a suitable criterion, and other 

evaluation criteria have been proposed [14]. In this research 

work, the Cohen‟s kappa co-efficient was applied to 

evaluate the performance of the classifiers with different 

features. 

At first, a confusion matrix as shown in Table 1 was 

calculated from the output of the classifier, where the rows 

represent the true classes and the columns represent the 

predicted classes by the classifier. 

Table 1. Example of a Confusion Matrix for M=4 classes 

Class 1 2 3 4 Total 

1 63 4 2 3 72 

2 2 67 2 1 72 

3 5 3 58 6 72 

4 2 3 3 64 72 

Total 72 77 65 74 288 

Then, the classification accuracy can be calculated as 

follows. 

           
∑    
 
   

 
 (11) 

      Where,   ∑ ∑    
 
   

 
    

Finally, the Cohen‟s kappa co-efficient,   was calculated 

as, 

          
     

    
 (12) 

Where,        (Overall agreement);      

              
∑       
 
   

   (Chance agreement); 

2.6 Optimization of performance parameters 

The performance parameters (e.g. update co-efficient u and 

no. of derivatives k for TDP, update co-efficient UC and 

model order p for AAR, kernel-width σ for SVM)   were 

optimized using cross-validation. However, it is important 

to notice that during cross-validation only the training set 

was used.  

In this process, for each of the different values of the 

parameter, the 8-fold cross-validation was implemented by 

dividing the training set of each subject into 8 subsets, 7 of 

them were used for training and the rest of the subset was 

used for test. The process is repeated for 8 times, every time 

with different subset as test set. Finally, average value of 

kappa was calculated. In this way, the value of the 

parameter with highest kappa was chosen as optimal value. 

3. Results and Discussion 

3.1 Optimized Performance parameters 

As stated earlier, the performance parameters were optimized 

using crossvalidation. These results are presented below. 

Figure 3 represents the variation of crossvalidation kappa, k 

with the change of update coefficient, u for TDP feature 

extraction. As seen in the figure, crossvalidation kappa 

decreases with the increase of u and the optimal value of u 

was found 0.0045. 
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Fig. 3: Change of Crossvalidation kappa with update coefficient, u 

for TDP features. 

 

Fig. 4: Variation of Crossvalidation kappa with no. of derivatives, 

  as TDP features. 

Figure 4 represents the variation of crossvalidation kappa 

with no. of derivatives,   used for TDP feature extraction 

and the optimal value is 5. It‟s important to note that, 

inclusion of higher order of derivatives causes an increase 

of processing time for TDP feature extraction. 

 

Fig. 5: Surface plot of cross validation kappa with the change of 

   and   for AAR features. 

Figure 5 represents the variation of crossvalidation kappa 

with the change of AAR update coefficient,    and model 

order,  . The figure suggests that, selection of    above 

0.01 decreases the kappa drastically and also a model order 

of 4 reduces the performance. However, selection of higher 

order model doesn‟t increase the kappa; rather it may 

increase the computation burden. However, combination of 

   and   of 0.004 & 6 respectively gives the highest peak 

and hence these values were taken as optimal value. 

Figure 6 shows the variation of crossvalidation kappa with the 

change of the kernel width,   for SVM. It can be seen that, 

kappa increases with the increase of   beyond a certain level 

and then it becomes saturated. The optimal value of   is 4. 

 

Fig. 6: A plot of Crossvalidation kappa vs Kernel width,  . 

A summary of all the optimal values of performance 

parameters has been given in Table 2. 

Table 2. The optimal value of performance parameters. 

Parameter Name Optimal 

Value 

AAR Update Coefficient,    & Model Order,   0.004 & 6 

Update Coefficient to extract TDP features,   0.0045 

No. of derivatives extracted as TDP features,   5 

SVM Kernel Width,   4 

3.2 Final Experiment Results on Test Set 

Finally, after selection of optimized parameters, these 

parameters were used in corresponding methods to classify 

EEG trials of test set. In these final experiments, the 

corresponding classifiers were trained using the 

corresponding features extracted from the training set and 

then were tested using the corresponding features extracted 

from test set for each subject. Then, the kappa or accuracy 

values of test set for all the 9 subjects were averaged to get 

the mean kappa/ accuracy.  

There are three different combinations of features and 

classifiers were tested in this paper: 

1) Features: AAR; Classifier: LDA 

2) Features: TDP; Classifier: SVM 

3) Features: TDP; Classifier: LDA 
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A comparison of performance for each of these 

combinations has been presented on Figure 7. 

 

Fig. 7: Comparison of classification performance between the 

methods implemented. 

From the figure, it is seen that, best kappa (0.54) is 

achieved by LDA classifier with TDP features. The kappa 

value for AAR features is significantly less than kappa 

value for TDP features with any combination of classifiers. 

Also, it was found during the experiment that, it takes much 

longer time extract AAR features. 

Table 3 shows the subject-wise comparison of kappa/ 

accuracy for each combination of features and classifiers 

implemented. It can be noticed from the table that, the mean 

kappa value decreased by the fact that, all of the methods 

show poor performance to classify the EEG data of subject 

2, 5 & 6. This is due to the fact that, BCI illiteracy (inability 

to use the BCI system) presents in the EEG data of these 

subjects which can be confirmed by comparing the results 

with BCI Competition IV for the dataset [15]. 

Table 3. Subject-wise comparison of implemented methods. 

 

Method 

Classifier:  

LDA 

Feature:  

AAR 

Classifier: 

 LDA 

Feature:  

TDP 

Classifier: 

SVM 

Feature:  

TDP 

Subject Acc. 

(%) 

Kap 

( ) 

Acc. 

(%) 

Kap 

( ) 

Acc. 

(%) 

Kap 

( ) 

Subject 1 76.87 0.69 83.99 0.79 82.21 0.76 

Subject 2 49.12 0.32 54.77 0.40 49.82 0.33 

Subject 3 63.00 0.51 78.02 0.71 75.09 0.67 

Subject 4 47.37 0.30 59.65 0.46 53.95 0.39 

Subject 5 39.49 0.19 46.74 0.29 35.14 0.13 

Subject 6 43.26 0.24 52.56 0.37 46.98 0.29 

Subject 7 67.15 0.56 72.56 0.64 69.31 0.59 

Subject 8 60.89 0.48 69.00 0.59 69.74 0.60 

Subject 9 62.12 0.49 70.45 0.61 68.56 0.58 

Mean 

Acc./kap 

56.58 0.42 65.30 0.54 61.20 0.48 

 

4.  Conclusion  

In this research, to classify four class motor imagery EEG 

signal, two types of features: TDP and AAR were extracted. 

The extracted features were classified using two types 

classifiers: LDA and SVM. Before extracting the features, 

the EEG data were pre-processed using band-pass filtering 

and CSP. The performance parameters of all of these 

methods were optimized using crossvalidation. Among the 

two types of features, best kappa was achieved by TDP 

features classified using LDA classifier. This suggests the 

usefulness of these methods (Features: TDP; Classifier: 

LDA) with improved algorithm in real time BCI system. 
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