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ABSTRACT 

Complexity analysis of real world multivariate wind data is addressed using the recently proposed multivariate 

multiscale entropy (MMSE) analysis. Both the original (univariate) MSE and the multivariate MSE methods are 

shown to perform better than traditional complexity analysis techniques, since they operate on multiple temporal 

scales of the signals and are, thus, able to extract information regarding inherent long range correlations in the data, 

signatures of structural complexity. The MMSE method, in addition, can also quantify inter-channel correlations in 

multivariate data and is perfectly suited for the analysis of multichannel data, where the channels exhibit different 

dynamical properties, such as three-dimensional wind speed. To cater for the non-stationarity of wind recordings, a 

novel scheme is presented for obtaining data-driven scales from input data using multivariate extension of empirical 

mode decomposition (MEMD), in order to obtain robust estimates. Our method can thus characterise different wind 

dynamics regimes and cloud-cover conditions in complexity domain. Finally, we illuminate how the different 

dynamic complexities associated with different wind regimes, and their connection with atmospheric parameters, 

such as temperature, or cloud cover, can be used as baseline knowledge in several important settings in renewable 

energy. 
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1.  Introduction 

Electrical power generation using wind farms has 

emerged as one of the solutions to our increased energy 

demand; however, power quality from wind farms is 

subject to variations due to the intermittent nature of 

wind. Wind speed variability causes vibrations in the 

mechanical structures of wind turbines and also results in 

significant voltage variations at the output terminals [1], 

[2]. Short term wind speed forecasting helps to mitigate 

these problems by improving control of wind farms 

through accurate prediction of the generated wind power. 

However, existing statistical methods address the wind 

forecasting problem using conventional linear statistical 

methods [3], [4] which may be suboptimal given the 

nonlinear, non-stationary, complex and intermittent 

nature of wind. It is therefore imperative to first obtain 

an idea about nonlinear and auto- and cross-channel 

correlation properties among the wind speed channels at 

multiple scales before building forecasting models. To 

that end, we propose a framework for nonlinear 

multivariate complexity analysis, which assesses the 

stochastic complexity of 3D wind speed and helps to 

enhance existing short term wind speed/power 

forecasting methods. 

Most real world signals including the wind signal exhibit 

complex dynamical behaviour and a number of nonlinear 

descriptors have been proposed to characterize the 

underlying signal generating mechanisms. These nonlinear 

measures include dynamical complexity [5], local 

predictability [6], correlation dimension [7], Lyapunov 

exponents [8] and phase synchrony [9]. Complexity
1
 

measures, in particular, reveal nonlinear structures or 

patterns in the data, typically manifested by nonlinear 

correlations at multiple scales in a time series. These 

measures have been extensively employed to distinguish 

between physiological time series originating from different 

physical systems or to identify different dynamic regimes 

coming from the same system [5], [10]. However, their 

usefulness is yet to be explored in environmental real world 

applications such as the classification of wind regimes 

based on their dynamical complexity and nonlinearity, a 

main focus of this paper. Employing nonlinear complexity 

measures on multivariate wind data is justified, and 

previous studies on different univariate wind speed data 

have shown the evidence of power law decay 

characteristics, which are typically associated with long 

range temporal correlations [1] and, hence, increased 

dynamical complexity [8].  

The notion of entropy is commonly used to define signal 

complexity by effectively  evaluating  the  amount  of 

structure  in a time series by assessing its degree  of 

regularity/irregularity [11], [12]. There are many 

established measures of complexity that are based on 

different versions of entropy: Pincus introduced 

approximate entropy [11] as a complexity measure which 

                                                           
1 The term `complexity' has many different meanings. In this paper, we are 

concerned with structural complexity which is maximized for data with 

long-term correlations, unlike Kolmogorov entropy measure which is 
maximized for random sequences. 
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was successfully used to distinguish different stages of 

sleep from electroencephalogram (EEG) and respiratory 

motion data [13]. Another complexity measure, known as 

sample entropy (SampEn) [12], was proposed by Richman 

and Moorman and is a modification of approximate entropy 

that makes it possible to operate on shorter data segments. 

Costa et al. noticed a discrepancy in the sample entropy 

method for physiological data sets and attributed it to the 

fact that sample entropy estimates were only defined for a 

single temporal scale. They argued that the dynamics of a 

complex nonlinear system manifests in multiple inherent 

scales of the observed time series and, thus, sample 

entropy estimates calculated on a single scale are not 

sufficient descriptors. 

This led to the multiscale entropy (MSE) method in which 

multiple scales of input data are first extracted using so-

called `coarse graining' method and sample entropy 

estimates are subsequently calculated for each scale 

separately [5], [10]. 

While the MSE measure has been successfully applied to 

distinguish between different physiological time series [5], 

[10], the method is not a perfect match for processing real 

world non-stationary data due to its deterministic way of 

generating scales via coarse graining of input data. The 

coarse graining process is based on low-pass filtering and 

is, therefore, not suited for extracting high frequency 

components of a signal. More critically, it reduces the input 

data length by the scale factor for each successive data 

scale, thereby, imposing a limit on the length of input data 

which can be effectively processed via MSE. To cater for 

the above issues regarding non-stationarity and the 

minimum length of input data, it was proposed to replace 

the coarse graining process in the original MSE method 

with the empirical mode decomposition (EMD) algorithm 

[14]. The resulting EMD-based MSE method [15] is highly 

suitable for the complexity analysis of non-stationary data 

sets owing to its data driven nature. Another motivation of 

using EMD in conjunction with the MSE method is that the 

standard MSE fails to cater for signals containing one or 

more pronounced trends; little can be inferred from entropy 

estimates as the trends tend to dominate other interesting 

features. From the statistical perspective, it is therefore 

imperative that any trends be removed before meaningful 

interpretation can be made from sample entropy values. 

Since EMD decomposes data into narrow-band quasi-

stationary signals, calculating sample entropy estimates on 

EMD-based output components, rather than coarse-grained 

components, improves the original MSE method. For 

instance, EMD naturally captures a trend in the data within 

its residue (last component), which can then be removed 

prior to the MSE analysis. 

Since real world wind data is inherently multivariate
2
, we 

require multichannel extensions of existing algorithms for 

their processing. In the context of complexity analysis of 

wind speed data, direct multichannel processing of the data 

                                                           
2 Wind speed data is inherently trivariate with the speed components in 
north-south, east-west and vertical directions. 

is a prerequisite since complexity of the data cannot be 

solely attributed to long range temporal (auto-)correlations 

within each channel; the inter-dependence (or cross-

correlation) among multiple channels also critically 

contributes to the complexity of the signal [8]. Likewise, 

for a fair and meaningful comparison between sample 

entropy estimates obtained from different channels of 

multivariate data, a fully multivariate scheme must be used 

to obtain multiple scales. This would ensure that the scales 

generated from each channel are same in number and 

similar in terms of spectral properties (belonging to same 

frequency bands), thus, making their comparison physically 

meaningful. 

To this end, we develop a robust framework for the 

structural complexity analysis of wind using the recently 

developed multichannel extensions of both MSE [16], [17] 

and EMD [18] algorithms. These extensions have been 

shown to outperform their univariate counterparts in the 

analysis of real world multivariate signals as they consider 

correlation among multiple data channels, which are 

ignored if those channels are processed separately using 

univariate algorithms [19]. More specifically, the proposed 

framework for multivariate wind speed data analysis 

generates data-driven scales from the multivariate extension 

of EMD (MEMD) which are subsequently analyzed by 

using the multivariate sample entropy (MSampEn) 

estimate. Besides generating comparable scales from 

multiple data channels, owing to its mode alignment 

property [20] the proposed MEMD-based MMSE method 

produces scales of same length as the length of input signal, 

thus, removing the limitation on input data size in the 

original MMSE method. The resulting method is also 

suitable for non-stationary multivariate wind data analysis 

owing to the data-driven nature of MEMD algorithm as 

opposed to deterministic coarse graining process used in 

MMSE. 

The paper is organized as follows: Section 2 describes 

Multivariate Sample Entropy (MSampEn) estimation; this 

is followed by an introduction to the standard and proposed 

MEMD-enhanced MMSE frameworks for the complexity 

analysis of multivariate data in Section 3. In Section 4, 

simulation results regarding the complexity analysis of 

multivariate wind data are presented and discussed and 

finally conclusion is drawn.                   

2.  Multivariate Sample Entropy 

In many applications involving different observables from a 

same system, data often come in the form of multivariate 

signals. Such data typically exhibits both temporal and 

cross-channel correlations which cannot be catered for by 

using univariate algorithms applied to multiple data 

channels separately. For that cause, a multivariate extension 

of sample entropy (MSampEn) has been proposed recently 

which enables entropy calculation for multichannel data, by 

taking into account both within- and cross-channel 

dependencies [16]. The method introduces a general 

multivariate embedding process based on combining 

observations from multiple channels in a single composite 
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delay vector. To calculate multivariate sample entropy 

(MSampEn), recall from multivariate embedding theory 

[26], that for a p-variate time series          
           , 

observed through   measurement functions       , the 

composite delay vector can be defined as 

                   
                

             
  

                 
               

                
       (1) 

where                     is the embedding vector, 

                   is the time lag vector, and the 

composite delay vector            (where   
∑  

 
     ). 

For a p-variate time series          
           , the 

MSampEn is outlined in Algorithm 1. 

3.  Multivariate Complexity Analysis 

The MSE method in its original formulation is only limited 

to the analysis of scalar time series, however, multivariate 

time series are routinely measured in experimental, 

biological and meteorological systems. Although such 

multivariate time series can be treated as a set of individual 

time series by considering each variable separately, this is 

only efficient if all the variables are statistically 

independent or uncorrelated at the very least, which is 

rarely the case in real world recordings. Moreover, the 

univariate MSE method cannot model cross-channel 

correlations present among multiple channels of the input 

data. To that cause, Ahmed and Mandic [16] [17] have 

recently extended the univariate MSE to the multivariate 

case; they used coarse graining to generate multiple scales 

and subsequently calculated multivariate sample entropy 

(MSampEn) on each scale to define a multivariate 

complexity measure known as Multivariate Multi-scale 

Entropy (MMSE). In this manuscript, in addition to the 

standard version of MMSE which uses coarse graining to 

define scales in the input data, an MEMD enhanced MMSE 

method is also presented which employs MEMD to 

generate intrinsic scales of the data, better suited to the 

properties of wind. 

Algorithm 1: Multivariate sample entropy (MSampEn) 

1: Form       composite delay vectors           , where 

            and                .   

2: Define the distance between any two composite delay vectors 

      and       as the maximum norm, that is, 

                                              .   

3: For a given composite delay vector       and a threshold  , 

count the number of instances    for which                 , 

   , then calculate the frequency of occurrence,   
     

 

     
  , and define  

      
 

   
∑     

     
      (2) 

4: Extend the dimensionality of the multivariate delay vector in (2) 

from   to      . This can be performed in p different ways, as 

from a space with embedding vector                    , 

the system can evolve to any space for which the embedding 

vector is                     (k=1, 2, ..., p). Thus, a total 

of         vectors         in      are obtained, where 

        denotes any embedded vector upon increasing the 

embedding dimension from    to        for a specific 

variable k. In the process, the embedding dimension of the other 

data channels (  ) is kept unchanged, so that the overall 

embedding dimension of the system undergoes the change from 

  to      .   

5: For a given        , calculate the number of vectors   , 

such that                     , where    , then calculate 

the frequency of occurrence,   
       

 

        
  , and 

define         
 

      
∑  

      
     

        (3) 

6: Finally, for a tolerance level r, estimate         as  

                     [
       

     
]  (4) 

 

Algorithm 2: Standard multivariate multiscale entropy 

1: Multiple coarse-grained time series are generated from the 

original time series          
           , where p denotes the 

number of variates (channels) and N the number of samples in 

each variate.   

2: The elements of the coarse-grained time series of scale factor 

  are calculated as:  

    
  

 

 
∑  

  
                 (5)) 

where     
 

 
 and   =      . 

3: Calculate the multivariate sample entropy, MSampEn 

(described in Algorithm1) for each coarse-grained multivariate 

    
 , and plot MSampEn as a function of the scale factor  .   

The following subsections explain both methods in some 

detail and give interpretation of their results for input 

multichannel white Gaussian noise as well as 1/f fractal 

noise. 

A. Standard multivariate multiscale entropy 

The standard multivariate multiscale entropy (MMSE) 

method is described in detail in Algorithm 2. The coarse 

graining based MMSE method assesses relative complexity 

of normalized multi-channel temporal data by plotting 

multivariate sample entropy as a function of the scale factor 

whereby:   

a) A multivariate time series is considered more 

structurally complex than another if, for the majority of 

time scales, its multivariate entropy values are higher 

than those of the other time series;  

b) A monotonic decrease in multivariate entropy values 

with the scale factor reveals that the signal in hand only 

contains information at the smallest scale, and is thus 

not dynamically complex;  

c) A constant MSE curve over all the scales indicates long 

term correlations in the data, a signature of truly 

complex systems.  



112  Mosabber Uddin Ahmed 

For illustration, Fig. 1(a) shows the standard multivariate 

MSE analysis [16], [17] for trivariate random white 

noise (uncorrelated), conforming to the interpretation 

that the MSampEn values monotonically decrease with 

scale, whereas for the     fractal noise (long-range 

correlated) the MSampEn remains constant over multiple 

scales. This has a physical justification, as by design     

noise is structurally more complex than uncorrelated 

white noise. 

B.  MEMD-enhanced multivariate multiscale entropy 

In standard multivariate multiscale entropy (MMSE), 

multiple data scales are generated by applying the same 

coarse graining process used for the univariate MSE to each 

input channel in parallel (see listing of Algorithm 2). 

Performing coarse graining separately for each channel is 

inherently not a data-adaptive process and also lacks direct 

multivariate approach; therefore, it fails to generate 

`aligned' and `intrinsic' temporal scales from the data - a 

prerequisite for high fidelity multiscale analysis. Moreover, 

the output of the coarse graining process reduces the length 

of each subsequent scale to the length of the original time 

series divided by the corresponding scale factor,  . The 

method, thus, imposes the constraint that the highest scale 

should have enough data points to be able to calculate valid 

entropy estimates. This somewhat limits the applicability of 

the coarse graining based MMSE method for short real-

world data. 

To alleviate the above problems, we propose to use 

multivariate empirical mode decomposition (MEMD) to 

generate multiple scales of a given multivariate data and 

subsequently perform multivariate entropy analysis on 

cumulative
3
 IMFs (scales). The proposed method is 

outlined in Algorithm 3. 

To illustrate the performance of the proposed MEMD based 

MMSE method, it was applied to synthetically generated 

trivariate white noise and trivariate     noise. The     

noise possesses long-range correlations and its standard 

entropy (at scale 1) is lower than that of white noise, 

however, the     noise is structurally complex whereas the 

trivariate white noise is not, and any complexity measure 

should be higher for     noise at increasing scales. Observe 

from Fig. 1(b) that though trivariate white noise has higher 

complexity than     noise for the first scale, the 

complexity becomes lower than     noise for higher scales. 

This example on synthetic data illustrates, that by design, 

    noise is structurally more complex than uncorrelated 

random noise, a result consistent with standard 

MSE/MMSE [5], [16], [17] as shown in Fig. 1(a). 

                                                           
3 Due to their narrow-band nature, an alternative option is to additionally 

apply coarse graining to the IMF-scales themselves, with minimal risk of 
aliasing. 

Algorithm 3: MEMD-enhanced multivariate multiscale 

entropy 

1: Generate multiple scales from   IMFs obtained by applying 

MEMD to a given multivariate time series          
          

       , where   denotes the total number of variates 

(channels) and   represents the total number of samples in each 

variate which does not change across MEMD-based scales. 

2: Define data-driven „scales‟ of   as the cumulative sum of 

IMFs either by    ∑  
 
      (Approach 1) or by    

∑  
     
      (Approach 2), where         denotes the 

cumulative IMF index, and    denotes the  th IMF. Only 

Approach 1 is used in the sequel. 

3: Calculate and plot multivariate sample entropy measure, 

given in (4), for each scale  .   

4. Applied Multi-Scale Complexity Analysis On 

Meteorological Data  

In this section, we apply multiscale complexity analysis on 

several multivariate meteorological data sets obtained under 

different environmental conditions. 

 

Fig. 1: Multivariate multiscale entropy (MMSE) analysis for 

trivariate white and 1/f noise, each with 10,000 data points using: (a) 

coarse graining based standard multivariate MSE, and (b) MEMD-

enhanced multivariate MSE. The curves represent an average of 20 

independent realizations and error bars the standard deviation (SD). 



Complexity Analysis of the Multivariate Wind Measurements: Renewable Energy Applications 113 

The data sets included: 

a) wind speed and temperature data collected under 

different cloud-cover conditions; 

b) wind speed data corresponding to `high', `medium' and 

`low' wind regimes which were classified based on 

their speed variations; 

In this manuscript, we refer to them as Cloud-cover data and 

Variance data, respectively. Further detail of the data sets is 

provided in the respective subsections where the results of 

complexity analysis performed via original MMSE and 

MEMD-enhanced MMSE on those data is given. 

For rigor, we also performed the complexity analysis on a set 

of multivariate surrogates generated from the above data sets 

via random shuffling; this provided a reference for a suitable 

comparison of complexity estimates obtained from different 

physical systems. Randomized shuffling of the input data 

channels effectively destroyed temporal and cross-channel 

correlations among their samples, while preserving their first 

and second order statistical properties. This way, significant 

difference between observed complexity estimates from 

input data sets and their respective (randomly shuffled) 

surrogates, over a range of scales, would reject the null 

hypothesis of both temporal and cross-channel independence, 

implying a higher complexity and nonlinear coupling in the 

considered data sets. 

 

Fig. 2: Multivariate multiscale entropy (MMSE) analysis of 3D 

wind data using: (a) coarse graining based standard multivariate 

MSE, and (b) MEMD-enhanced multivariate MSE. The curves 

represent an average of 20 trials and error bars standard error (SE). 

A. Complexity analysis of wind during different cloud 

covering 

The energy balance of the Earth's climate is greatly 

influenced by clouds because of the cooling effect of albedo 

(as it reflects solar radiations) and the greenhouse warming 

effect (as it absorbs and re-emits terrestrial radiations back 

to the earth surface). This also depends on a number of 

factors, including the size of the droplets, the density of the 

clouds, their thickness, altitude and temperature, among 

others. The interaction of clouds with radiation thus alters 

the surface-atmosphere heating distribution, which in turn 

drives atmospheric motion that is responsible for the 

redistribution of clouds. Due to the complexity of the 

multiscale nature of cloud formation and cloud-radiation 

interactions, its total affect on the climate system is still 

unclear and thus provides one of the major uncertainties in 

climate modelling and prediction [29]. 

To analyze the underlying complexity of different cloud 

coverage regimes, we examined air temperature, wind 

speed and direction data taken from the Iowa 

Environmental Mesonet (IEM), Iowa State University 

Department of Agronomy's website.
4
 The data contained 

two groups, one where more than 90% of the sky was 

covered with cloud (termed as overcast) and another where 

there were no clouds below 12000 feet (termed as clear). 

The wind speed, direction and air temperature data were all 

collected in one minute intervals from the Washington 

station of the Automated Weather Observing System 

(AWOS) stations network. Each group consisted of 20 trials 

with 3000 samples. We also generated 500 random shuffled 

surrogates of the above data to provide a suitable reference 

for performing a comparison between complexity curves 

from different systems. The values of the parameters used 

to calculate MSampEn were    ,     and   
     (standard deviation of the normalized time series), 

for all the three data channels. 

The data and the set of random surrogates were first 

analyzed using the standard multivariate multiscale entropy 

method and the results are shown in Fig. 2(a). Next, the 

proposed MEMD-enhanced multivariate multiscale entropy 

method was applied, and Fig. 2(b) shows the results. It can 

be noticed that both the methods clearly differentiated 

between the clear and overcast cloud coverage regimes and 

detected higher complexity in the overcast cloud coverage. 

This confirms that the formation of cloud increases the 

complexity of the underlying environmental system. This is 

intuitive since the interaction between temperature and 

wind increases during cloud formation which is absent in 

clear sky conditions [29]. 

Moreover, it is evident that although surrogates showed 

greater complexity than the considered data at higher (lower 

indexed) scales ( ) and cumulative IMF index (n); their 

complexity decreased at lower (higher indexed) scales 

implying an absence of significant `complex' structures 

(correlations) at multiple scales. The Cloud-cover data set, 

                                                           
4 http://mesonet.agron.iastate.edu/request/awos/1min.php 
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on the other hand, exhibited higher complexity on all scales 

as evident by approximately flat and high MMSE curves for 

cloud-cover and clear-sky regimes, using both coarse 

graining and MEMD-enhanced MMSE methods. 

B. Complexity analysis of ‘high’, ‘low’, and ‘medium’ 

wind dynamics 

We shall now show that the MMSE method allows us to 

characterize different wind regimes based on the variance 

of their speeds. For this purpose, we identified and analyzed 

`high', `medium' and `low' wind regimes corresponding to 

high, medium and low variance of their respective speeds. 

The data set used in our simulation was recorded using a 

3D ultrasonic anemometer (measurements taken in the 

north-south, east-west and vertical direction) at a sampling 

frequency of 50Hz in the courtyard of Institute of Industrial 

Science (IIS) of the University of Tokyo. Fig. 3 shows a 

plot of the magnitude of wind speed recordings used in the 

simulation; it can be noticed that the wind dynamics was 

changing with time allowing us to define three wind 

regimes, labelled as `low', `medium', and `high'. 

Fig. 3: Magnitude of the 3D wind signal. The wind dynamics 

regimes are identified as „low‟, „medium‟, and „high‟. 

To generate the mean and variance (error bars) of the 

calculated sample entropy estimates, we divided the data 

set into    segments, with   segments each containing 

high, medium and low dynamics wind speed data. To 

reduce the effects of high frequency noise, the data was 

preprocessed by a moving average filter. The values of 

the parameters used to calculate MSampEn were    , 

    and        (standard deviation of the 

normalized time series), for each of the four data 

channels. We also performed the complexity analysis of 

corresponding random-shuffled surrogate time series, 

generated for each    data segments, to provide 

reference complexity curves for a suitable comparison 

with the original data.  

Fig. 4(a) shows the standard multivariate multiscale entropy 

analysis, performed by considering the three wind 

directions as variables in a trivariate model. Observe that 

the multivariate approach was capable of detecting long-

range correlations in the wind speed for all the wind 

regimes as the MMSE curve was similar to that of     

noise (cf. Fig. 1(a)), conforming with the existing results 

[27],[1],[28]. Fig. 4(a) also shows that, as desired, the 

medium dynamics regime had higher complexity than 

either high or low dynamics regime. This is also intuitively 

clear as medium wind dynamics has fewest constraints, and 

is thus most complex as mild winds come from a wide 

range of directions [25][28]. Surrogate series, as expected, 

showed higher MMSE values than that of input data only at 

highest temporal scales (lower index scales), their 

complexity decreasing with increasing scale indexes; this 

behaviour is similar to that of random uncorrelated 

multivariate noise (see Fig. 1). 

Fig. 4: Multivariate multiscale entropy (MMSE) analysis of 3D 

wind data using: (a) coarse graining based standard multivariate 

MSE, and (b) MEMD-enhanced multivariate MSE. The curves 

represent an average of 6 trials and error bars the standard error 

(SE). 

Fig. 4(b): shows the corresponding MEMD-enhanced 

multivariate multiscale entropy analyses. Observe that 

MEMD-enhanced MMSE for the trivariate model not only 
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showed a comparatively higher complexity in the medium 

wind dynamics regime, but was able to differentiate among 

the low, medium and high dynamics regimes at higher 

scales, as the error bars did not overlap, hence, a clear 

improvement over the standard MMSE method. Moreover, 

as we can consider the wind with medium dynamics as the 

least constrained system, as opposed to the high or low 

dynamics regimes which are constrained [25], this 

interpretation is also in agreement with the general 

complexity loss theory with constraints [30]. 

5.  Discussion and scope of the work 

The results presented in the previous section suggest the 

presence of long range (auto-) and cross-channel 

correlations in the chosen data as MMSE curves for those 

data were relatively flat; note that relatively higher and 

constant MMSE curves imply similar complexity in 

multiple scales of the data, a characteristic common to data 

sets containing long range correlations such as     (fractal) 

noise time-series. It was also observed that the analyzed 

data sets collected under different environmental conditions 

were easily distinguished based on their complexity curves, 

suggesting a direct influence of environmental conditions, 

e.g cloud covering, on meteorological data characteristics. 

The study provides the conclusive evidence, which has 

great potential in helping to accurately model wind speed 

for short-term wind power forecasting
5
 which is extremely 

important for wind turbine operation and efficient energy 

harvesting. In the literature, different techniques have been 

used to forecast wind speed: a) methods employing 

numerical weather prediction models which incorporate 

physical properties of environment such as pressure, terrain 

etc; b) statistical methods using autoregressive integrated 

moving average (ARIMA) based models [3], least mean 

squares (LMS) filters and their respective multivariate 

extensions e.g. vector autoregressive moving average 

(VARMA) models [4] and quaternion LMS [31]; c) 

methods using artificial neural networks [32]; d) spatio-

temporal methods integrating information of wind speed at 

neighbouring sites [33]. 

The methods and results presented in this paper could be 

directly integrated into the statistical methods employed for 

wind forecasting. For instance, higher and constant 

complexity (MMSE) values at multiple scales of wind data 

would suggest the use of multi-scale statistical ARIMA, 

VARMA and quaternion LMS models for wind speed data 

forecasting, that is, applying statistical models to each scale 

separately and then performing prediction. For data sets 

exhibiting different complexity values at multiple scales 

(varying complexity or MMSE curves), different model 

parameters could be tuned for each scale depending on their 

complexity values, for improved speed forecasting. MEMD 

based MMSE could be of great significance in this multi-

scale analysis framework as MEMD inherently generates 

                                                           
5Accurate long term forecasting would require more complex and 

computationally expensive numerical weather prediction (NWP) models 
employing several environmental variables in a single complex model. 

quasi-stationary scales (components) which could qualify 

for the stationarity requirements of these statistical 

methods. 

Moreover, the generic multivariate nature of the algorithms 

and analysis presented in the paper makes it possible to be 

easily combined with existing spatial-temporal methods for 

wind forecasting. For this cause, wind speed information 

from neighbouring sites could be combined with the 

original speed data to create a multivariate signal. 

Multivariate complexity analysis on the resulting signal 

would then exploit the speed information from 

neighbouring sites and is expected to yield better 

forecasting estimates. 

6. Conclusion 

A data adaptive multivariate framework for dynamical 

complexity analysis of real-world wind data has been 

introduced. The proposed method has been shown to 

alleviate the stationarity requirements of the current 

multiscale entropy methods by defining data-adaptive 

scales through multivariate empirical mode decomposition 

(MEMD), thus making full use of cross-channel 

information based upon multivariate sample entropy 

estimate and MEMD. As a result, the proposed 

methodology has the ability to produce robust and 

physically meaningful complexity estimates for real-world 

systems, which are typically multivariate, finite in duration, 

and of noisy and heterogeneous natures. The method has 

been validated on several case studies based on real-world 

wind data and can be used for analysing underlying 

dynamical complexity of climatic variables. 
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