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ABSTRACT 

In this paper, a novel method is presented for anomaly detection in multivariate data. The proposed method is based 

on computing multivariate entropy of input data at multiple scales, via the MMSE method, a technique recently 

proposed for the dynamical complexity analysis of multivariate data. In the proposed methodology, the anomalous 

behaviour is assumed to be generated by a constrained system and thus is easily differentiated from the established 

normal behaviour, in accordance with the “complexity loss” hypothesis, traditionally used for physiological systems. 

Simulations are provided to demonstrate the effectiveness of the approach on real world data sets in terms of 

anomaly detection. 
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1.  Introduction 

Anomaly detection relates to the study of finding patterns in 

a given data set which deviate from the established normal 

behaviour. It has been used in different fields to detect and 

remove anomalous measurement that may arise from 

mechanical faults, human or instrumentation error, and 

changes in system behaviour etc. [1]. Isolating and 

characterizing anomalies is a prerequisite to improve the 

quality of the original data set, and aiding in the 

identification of system faults and frauds [2]. Anomaly 

detection techniques are relevant in a variety of domains, 

such as, fraud detection for credit cards, insurance or health 

care, intrusion detection for cyber-security [3], fault 

detection in safety critical systems, and military 

surveillance for enemy activities [1]. 

In literature, a number of anomaly detection techniques can 

be found; mainly, these can be classified into classification-

based methods [4], nearest neighbour-based methods [5], 

clustering-based methods [6], [7], and statistical techniques 

[8], [9]. Moreover, methods based on information theoretic 

measures, and spectral estimates are also available [1], [10], 

[11]. Each of the above class of techniques makes some key 

assumptions to differentiate between normal and anomalous 

behaviours in input data. For instance, techniques employing 

information theoretic measures, such as, Kolomogorov 

complexity, entropy, and relative entropy, are based on the 

assumption that anomalies in data induce irregularities in the 

information content of input data. These techniques mainly 

involve dual optimization, attempting to minimize the 

―anomalous‖ subset size while concurrently maximizing the 

reduction in the complexity of the data set [1].  

However, in techniques involving traditional entropy 

measures, such as, Kolomogorov complexity, and relative 

entropy etc, features related to the structure and the 

organization of patterns in input data over a range of time 

scales are not accounted for, as these measures are only 

computed over a one-step difference or a single time scale, 

that is,         where    is the joint entropy for a time 

series with   variables. Costa et al. noticed this discrepancy 

and argued that the dynamics of a complex nonlinear 

system manifests in multiple inherent scales of the observed 

time series and, thus, entropy estimates calculated on a 

single scale are not sufficient descriptors for real world 

data. To that end, they proposed multiscale entropy (MSE) 

analysis method which aimed at quantifying the 

interdependence between entropy and scale. This was 

achieved by first extracting multiple temporal scales of 

input data using the so-called coarse graining method and 

sample entropy estimates were subsequently calculated for 

each scale separately [12], [13]. This facilitates the 

assessment of the dynamical complexity of a system, over a 

range of inherent scales residing in the data. 

Recently, a multivariate extension of the MSE method 

known as the multivariate multiscale entropy (MMSE) 

technique [14], [15] has been proposed. MMSE method has 

shown to perform better than traditional information 

theoretic measures, since it operates on multiple scales of 

the signals and are thus able to extract information 

regarding inherent long range correlations in the data. In 

addition, MMSE can also quantify inter-channel 

correlations in multivariate data and is thus suited for 

signals containing multiple channels. 

We propose to use the above multi-scale entropy measures 

for the anomaly detection in both univariate and 

multivariate real world data. Traditionally, the application 

of these techniques have been limited to physiological [15] 

and meteorological [14] data sets. However, they have 

tremendous potential in applications related to anomaly 

detection in input data which will be explored in this paper. 

The basis behind using both univariate and multivariate 

techniques is that the (M)MSE measure of dynamical 

complexity has been shown to span a whole range of 
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properties between the perfect regularity and total 

randomness: (M)MSE measures have smaller values for both 

deterministic (predictable) and uncorrelated random 

(unpredictable) signals, and comparatively large values for 

correlated (linear/nonlinear) stochastic processes. Moreover, 

in physiological data sets, (M)MSE is used along with the 

concept known as `complexity loss‘ hypothesis [16], which 

postulates that the complexity of a physiological or 

behavioural control system degrades with disease and aging.  

Using similar argument, we extend the analysis for anomaly 

detection, hypothesizing that an anomaly in data would be 

‗fickle‘ in a sense that it will generally not reveal complex 

variability associated with long-range (fractal) 

correlations [16] due to its constrained nature, and is thus 

expected to yield lower complexity estimates over a range 

of inherent data scales. On the other hand, data without 

anomalies is expected to retain its inherent structures (or 

correlations) and will typically yield higher complexity 

estimates, allowing us to make a distinction between the 

two regimes, that is, normality and anomaly.  

The organization of the paper is as follows: Section 2 

illustrates the concepts of multivariate sample entropy and 

associated multivariate multiscale entropy method 

(MMSE). This is followed by a theoretical analysis of 

MMSE on multivariate correlated and uncorrelated noises 

in Section 3 & Section 4. The simulation results on real 

world multivariate data for the purpose of anomaly 

detection are given in Section 5; uterine EMG data, 

financial data and 3D motion sensor data are analyzed in 

that section and finally conclusion is drawn.                

2.  Multivariate Multiscale Entropy 

The recently introduced multivariate multiscale entropy 

(MMSE) analysis has the following steps [14] [15]:  

1) Temporal scales are defined by averaging a  -variate time 

series          
            over non-overlapping time 

segments of increasing length (coarse graining), where N is 

the number of samples in every channel. This way, for scale 

 , a coarse grained multivariate time series is obtained as: 

     
  

 

 
∑     

  

          

  (1) 

where     
 

 
 and the channel index   =      .  

  2) Multivariate sample entropy,        , is evaluated as 

in Algorithm 1 for each coarse-grained multivariate     
 , and 

then         is plotted as a function of the scale factor   

Algorithm 1: Multivariate sample entropy (MSampEn) 

1: For a p-variate time series          
           , observed 

through   measurement functions       , the multivariate 

embedded reconstruction is based on a composite delay vector  

                   
                

             
  

               
               

                
   

where                     is the embedding vector, 

               is the time lag vector, and the composite delay 

vector           , where   ∑   
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2: Form       composite delay vectors           , where 

            and                .   

3: Define the distance between any two composite delay vectors 

      and       as the maximum norm, that is, 

                                              .   

4: For a given composite delay vector       and a threshold  , 

count the number of instances    for which                 , 

   , then calculate the frequency of occurrence,   
     

 

     
  , and define       

 

   
∑     

     
                                       

5: Extend the dimensionality of the multivariate delay vector in 

(2) from   to      . This can be performed in p different 

ways, as from a space with embedding 

vector                     , the system can evolve to 

any space for which the embedding vector is             
        (k=1, 2, ..., p). Thus, a total of         vectors 

        in      are obtained, where         denotes any 

embedded vector upon increasing the embedding dimension from 

   to        for a specific variable k.   

6: For a given        , calculate the number of vectors   , such 

that                     , where    , then calculate the 

frequency of occurrence,   
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7: Finally, for a tolerance level r, estimate         as  

                     [
       

     
]                 (2) (4) 

 

3.  Geometric Interpretation Of Multivariate Sample 

Entropy 

Underpinning the multivariate sample entropy method is 

the estimation of the conditional probability that two 

similar sequences will remain similar when the next data 

point is included. This is achieved by calculating the 

average number of neighbouring delay vectors for a given 

tolerance level (r) and repeating the process after 

increasing the embedding dimension, from   to    , a 

geometric interpretation of which is shown in Fig. 1 for 

uncorrelated bivariate white noise and in Fig. 2 for 

correlated bivariate white noise, respectively. Fig. 1(b) 

shows the set of delay vectors for a  -channel 

uncorrelated white noise ([x(n), y(n)] with         & 

       ) and illustrates the neighbors as neighboring 

vectors at a point in an  -dimensional space that can be 

represented by the points enclosed by an  -sphere or an 

 -cube, for the Euclidean and maximum norm 

respectively. Upon increasing the embedding dimension 

from (   ) to (   ), we have two different 

subspaces spanning: (i) the vectors [x(n), x(n+1), y(n)] 

and (ii) the vectors [x(n), y(n), y(n+1)]. The combined 

3D-plot is shown in Fig. 1(c). The         algorithm 

accounts fully for both within- and cross-channel 

correlations by comparing the composite delay vectors of 

all such subspaces. 
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We next illustrate why MSampEn yields higher complexity 

for correlated multichannel signals than for uncorrelated 

signals. In Fig. 1(b), we see that there is no correlation 

between the channels of uncorrelated white noise, whereas 

in Fig. 2(b), the correlation between the channels of a 

correlated bivariate noise is clearly seen. In Fig. 1(c), there 

is no perceived structure in the  -dimensional space and as 

a result both the quantity       and         are very 

similar. In other words, the probability of finding any two 

composite delay vectors which are similar within a 

tolerance level   in  -dimensional space and in  -

dimensional space are higher and of the same order. As a 

result, MSampEn is lower. For correlated bivariate noise 

(Fig. 2), some structures (non-circular shape) are seen both 

in the  -D space (Fig. 2(b)) and in the  -D space 

(Fig. 2(c)). Moreover, this time the quantity         was 

much smaller than the quantity      .  In other words, the 

probability of finding any two composite delay vectors 

which are similar within a tolerance level   in  -

dimensional space is much higher than in the  -dimensional 

space. As a result, MSampEn estimate is relatively higher. 

 

Fig. 1: Geometric interpretation of MSampEn calculation from uncorrelated bivariate white noise 

 

Fig. 2: Geometric interpretation of MSampEn calculation from correlated bivariate white noise. 

Fig. 3: Multivariate multiscale entropy (MMSE) analysis for 

bivariate white and 1/F noise, each with 10,000 data points. The 

curves represent an average of 20 independent realizations and 

error bars the standard deviation (SD) 

4.  Simulation Using Correlated Vs Uncorrelated Noises 

MMSE is designed for multivariate data and caters for both 
within- and cross-channel correlations. To illustrate this, we 
first generated independent realizations of white and     
noise, and the two channels of bivariate white and     
noise were constructed using combinations of those 
independent realizations, thus making the channels 
correlated. Fig. 3 shows that, as desired, the proposed 
multivariate MSE fully caters for both within- and cross-
channel correlations. Indeed, based on MMSE curves, the 
complexity of the correlated bivariate     noise at large 
scales was the highest, followed by the uncorrelated     
noise, and correlated and uncorrelated white noise. This 
conforms to the underlying physics and validates the 
proposed MMSE method, as the complexity of the 
considered multivariate processes exhibiting both within- 
and cross-channel correlations is higher than that of 
uncorrelated multivariate white noise and uncorrelated 
multivariate     noise (where long range correlations only 
exist within single channels). 
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Fig. 4: MMSE analysis of filtered 3-channel Uterine EMG 

(UEMG ) signal. The curves represent average complexity results, 

where the error bars denote the standard error (SE). 

Experimental Results 

Next we performed anomaly detection in different multi-

variate data through multiscale complexity analysis. The 

data sets included: 

a) Uterine EMG data from term and preterm labour; 

b) Financial data from different historical period; 

c) Gait pattern form normal and constrained 

walking; 

5.1  Anomaly detection in physiology of parturition 

First, multivariate multiscale entropy analysis was applied 

on the uterine EMG records to detect anomaly by 

quantifying the degree of complexity underlying the term 

and pre-term deliveries. The Electrohysterogram records 

(uterine EMG records) used in this study are included in the 

Term-Preterm Electrohysterogram Database (TPEHG DB) 

and publicly available from PhysioNet [17]. The records 

were obtained during regular check-ups either around the 

22nd week of gestation or around the 32nd week of 

gestation. The database contains 300 uterine EMG records 

from 300 pregnancies (one record per pregnancy) of which: 

a) 262 records were obtained during pregnancies where 

delivery was on term (duration of gestation at delivery 

> 37 weeks): among them,  143 records were obtained 

before the 26th week of gestation and 119 were 

obtained later during pregnancy, during or after the 

26th week of gestation; 

b) 38 records were obtained during pregnancies which 

ended prematurely (pregnancy duration ≤ 37 weeks), of 

which: 19 records were obtained before the 26th week 

of gestation and 19 records were obtained during or 

after the 26th week of gestation. 

Each record is composed of three channels, recorded from 4 

electrodes, sampled at 20 Hz and 30 minutes in duration. 

Besides, each signal was digitally filtered using 3 different 

4-pole digital Butterworth filters with a double-pass 

filtering scheme to ensure zero phase shift. A detail 

discussion about the database is given in Reference [18]. 

We had chosen two different m values, that is m=3 and 

m=2; and found that m=3 yield slightly better separation 

result than m=2 for each cases. The result also showed 

better separation when the band-pass filter cut-off 

frequencies were from 0.08Hz to 4Hz. As a result, only the 

results for m=3 and of cut-off frequency 0.08Hz-4Hz are 

reported here. In all the cases, r was taken as 0.15 times the 

total variation of the 3-channel UEMG signal. 

There are significant differences between the UEMG 

signals recorded early and late (a, b and e panel of Fig. 4). 

This means as the time of gestation progresses, the average 

multivariate sample entropy values for both term and pre-

term delivery records drop indicating higher predictability 

or less complexity of the signals as the delivery approaches. 

On the other hand, the MSampEn values are lower for pre-

term delivery records (c, d and f panel of Fig. 4) regardless 

of the gestation duration at the time of recording which 

confirms that the pre-term delivery records are less complex 

or more predictable than the signals of term delivery 

records. Besides, in all the cases, the separation is better if 

we consider the multiscale MMSE curves than the measures 

in scale 1. This also confirms that the original signal not 

only contains information in the smallest scale but also 

reveals new information at all scales. Thus we can 

differentiate between term and preterm labour and also 

between EMG recorded earlier vs late in pregnancies in 

agreement with the earlier studies [19]. 

5.2 Anomaly detection in financial data 

Next, the anomaly in financial time series was detected by 

analyzing the underlying complexity of the world economy 

at large. The severity of the major events and their relative 

impacts on the global economy is well understood and 

analyzed, thus placing us in a better position to interpret 

and analyze the results from the MMSE analysis. Four 

major indices in the United States economy were selected 

for our study. The choice of using the economy of the 

United States for analysis was attributed to the fact that it is 

recognized as one of the most influential financial markets 

around in the world, with deep and intricate connections 

and interdependent relationships with many other markets 

such as Europe, Japan, and China. It can therefore be 

assumed that the market trends of these major indices are 

indicative of the world economy by and large. The 4 indices 
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chosen were Dow Jones Industrial Average, S&P 500, 

Nasdaq Composite, and Russell 2000. 

They were chosen for our study because they are amongst 

the most widely used benchmark indices in tracking the 

market performance in the United States [20]. 

5.2.1 Segmentation of market trend history 

For the purpose of our study, we zoomed into 

approximately two decades of market trend between 1991 

and 2011. Before putting the time series of the 4 indexes 

through MMSE algorithm, we must first have a good 

understanding of some of the historical events which 

shaped the progression of these time series. To that end, the 

data between 1991 and 2011 was divided into 2 different 

periods, with the intention of classifying the different eras 

that the world economy went through based on the various 

historical events that took place. It is difficult to clearly 

demarcate the various periods according to the different 

times of stress because it is hard to define clear start and 

end dates for an economic crisis. In addition, the lead up to 

a crisis and the duration of the impact after the crisis may 

vary and is usually subjective. 

Period 1 (01/01/1991 to 31/12/1999). The economy in the 

1990s went through what is popularly termed by many as 

the 'dot-com boom'. The decade saw exceptional levels of 

growth in the markets, particularly in the technology 

industry, as market sentiments were buoyed by fast moving 

technological advancements. Several incidences of major 

political and civil unrest around the world such as the 

Collapse of the Soviet Union (1991), Persian Gulf War 

(1990-1991), Yugoslav Wars (1991-1995 and 1998-1999), 

Rwanda Genocide (1994) and the Second Congo War 

(1998) failed to dampen the exceedingly positive 

sentiments surrounding the Information Age of the market. 

The only significant dent inflicted on the markets during 

this decade was the Asian Financial Crisis (1997) which 

saw sizeable losses across all major indexes due to the 

severe turbulence that originated from the economies within 

South-east Asia [21]. 

Period 2 (01/01/2000 to 31/12/2011). The early 21st 

century brought about high levels of uncertainty as the 'dot-

com bubble' burst. A lethal combination of over-enthusiasm 

of the information era and bad financial practices [22] 

which developed towards the end of the 20th century 

culminated in one of the biggest financial market meltdown 

recorded since the Great Depression. The crisis was further 

compounded by the terrorist attacks on 11th September 

2001 which saw retaliation in the form of the declaration of 

the War on Terror by the United States and the subsequent 

invasions of Afghanistan (2001) and Iraq (2003). 

The middle of the new decade of the 21st century witnessed 

renewed enthusiasm amongst investors who saw huge 

investment opportunities in stocks which were believed by 

many to be undervalued after the turbulent start to the new 

century. There was rapid recovery amongst all markets as 

major indexes retraced steadily and regained large amounts of 

ground that were lost during the recession of the early 2000s. 

Just less than a decade on from the recession of the early 

21st century, the world economy was to plunge back into 

yet another deep recession owing to the collapse in the sub-

prime mortgage market in the United States. The severity of 

the crisis deepened through 2008 which eventually led to 

the infamous and iconic collapse of Lehman Brothers as 

they filed for bankruptcy on 15th September 2008, leading 

to what is known as the Global Financial Crisis of the late 

2000s. In a rather similar fashion to 'dot-com bubble' burst, 

the recession was brought about by the bursting of a bubble 

which in this case was termed as the 'housing bubble'. 

 

Fig. 5: MMSE analysis for quadrivariate financial time series 

5.2.2 MMSE analysis 

Each two period of the time series for the 4 indexes were 

grouped together to give a quadrivariate input to the 

MMSE. The values of the parameters used to calculate 

MSampEn were     ,      and        (standard 

deviation of the normalized time series) for each data 

channel. For rigor, we also performed the complexity 

analysis on a set of multivariate surrogates generated from 

the above data sets via random shuffling; this provided a 

reference for a suitable comparison of complexity estimates 

obtained from different physical systems. Randomized 

shuffling of the input data channels effectively destroyed 

temporal and cross-channel correlations among their 

samples, while preserving their first and second order 

statistical properties. This way, significant difference 

between observed complexity estimates from input data sets 

and their respective (randomly shuffled) surrogates, over a 

range of scales, would reject the null hypothesis of both 

temporal and cross-channel independence, implying a 

higher complexity and nonlinear coupling in the considered 

data sets. 

Fig. 5 shows the results of the MMSE analysis. The 

quadrivariate financial time series in both periods exhibit 

long-range correlation. This is reflected in the 

approximately horizontal plots of the various time series. 

Besides, period 2 demonstrate a higher measure of 
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complexity as during this period there was relatively high 

volatility and financial distress and conversely a lower 

measure of complexity during period 1 of relative financial 

stability. The intuition here is that when the degree of 

volatility and stress in the market increases, the progression 

of the time series becomes more responsive to the events 

and factors that shape market movement, thus giving rise to 

an increase in the complexity measure. Conversely, when 

there is financial stability in the Market, the progression of 

the time series becomes more regular. Although the 

financial time series all tend to generally trend upwards 

during periods of stability, we can argue that the business 

cycles become much more predictable, which intuitively 

makes the financial time series less complex under such a 

scenario. The MMSE analysis therefore provides us with 

results that are intuitively agreeable with the behaviour of 

the financial time series. This affirms the accuracy and 

precision of the MMSE algorithm in characterizing 

multivariate time series in terms of complexity, with 

applicability to financial time series. This result presents us 

with a novel approach to detect anomaly in financial time 

series by using complexity measure and thus characterize 

the degree of volatility and stress in the financial markets. 

5.3 Anomaly detection in gait pattern 

Next, MMSE was used to detect anomaly in gait patterns. 

3D acceleration was recorded from a subject who walked 

continuously for two minutes on level ground around an 

obstacle free, long, approximately oval path using motion 

tracker sensors from Xsens Technologies. Six motion 

tracker sensors are placed on left and right ankle, thigh and 

wrist. The sampling frequency was 75 Hz. Two anomaly 

walking pattern was also simulated. In one case, one 

backpack with some weights was carried by the subject. In 

other case, some weights were tied with both left and right 

thighs of the subject and the subject walked blind-folded. 

For each condition, five trials were recorded. 

The values of the parameters used to calculate MSampEn 

were     ,      and        (standard deviation of 

the normalized time series) for each data channel; these 

parameters were chosen on the basis of previous studies 

indicating good statistical reproducibility for SampEn [23]. 

For MMSE, the length of each coarse-grained sequence was 

  (scale factor) times shorter than the length of the original 

series, so the highest scale factor considered in the analysis 

was   =10. 

Fig. 6 shows the results obtained by the MMSE analysis. As 

expected, the anomaly conditions (weighted and blind-

folded or backpacked) have lower complexity for most of 

the scale factors than the normal condition (normal 

walking). This is because the normal walking condition 

represents unconstrained system whereas by wearing a 

backpack or blind-folding, we have actually constrained the 

gait dynamics. On the other hand, the surrogates show the 

MMSE profiles similar to that of the random noises. 

 

Fig. 6: Multivariate multiscale entropy (MMSE) analysis for 

anomaly detection in different gait patterns. The curves represent 

an average of 5 trials and error bars the standard deviation (SD). 

5. Conclusion 

This work has introduced a novel method for anomaly 

detection from multivariate data based on multiscale 

complexity analysis. The proposed method assumes the 

anomalies as generated by a constrained system and thus 

have different degree of complexity than the normal, 

unconstrained system. The proposed multivariate multiscale 

entropy (MMSE) method has been shown to be naturally 

suited to reveal the long range within- and cross-channel 

correlations present in multichannel data and thus can 

detect anomalies as the breakdown of this sort of spatio-

temporal correlations. The approach has been validated on 

synthetic data and on real world multivariate financial and 

biomedical datasets. This method works on systems or 

signals which shows long range correlation as the method is 

based on complexity measures which estimate this type of 

correlation. This is the only limitation of this method. In 

future, we will compare our methods with the existing 

anomaly detection techniques. 
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