• Printed Journal
  • Indexed Journal
  • Peer Reviewed Journal
Journal of Applied Science & Engineering

Dhaka University Journal of Applied Science & Engineering

Issue: Vol. 7, No. 2, July 2022
Title: Characterization of the CZTS (Cu2ZnSnS4) thin film for solar cell absorber layer synthesized from the nitrate-based sol-gel precursor solution
  • M Rahman
    Department of Physics, Dhaka University, Bangladesh
  • M S Bashar
    IFRD, BCSIR, Dhaka, Bangladesh
  • N Islam
    Department of Physics, Dhaka University, Bangladesh
Keywords: Thin film, Sol-gel, Absorption layer, Solar cell, Cu2ZnSnS4, XRD, SEM, EDS.

Manufacture of eco-friendly CZTS (Cu2ZnSnS4) thin film absorption layer of pure keserite structure for solar cell is far-reaching. We have manufactured the CZTS thin films by sol-gel dip-coating means from the nitrate-based chemicals. After hardening at 550°C in vacuum condition, we characterize the films by UV–vis spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) methods. The CZTS films provided high optical absorption coefficient (2.92x104cm-1) and average band gap energy (1.58 eV). X-ray diffraction analysis proved the kesterite structure of films. The surface morphology analysis proved the deposition of crammed, condensed and granulated CZTS films. The thin films have intermittent disposal of agglomerated particles with clear-cut edges. The energy dispersive X-ray spectroscopy analysis conferred stoichiometric ratio as Cu: Zn: Sn: S= 2.1: 1.3: 1: 5.2

  1. D. Ginley, M. A. Green, and R. Collins, Solar Energy Conversion Toward 1 Terawatt. MRS Bulletin,33(4), 355-364, 2008.
  2. J. J. Scragg, P. J. Dale, L. M. Peter et al. New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. physica status solidi (b),245(9), 1772-1778, 2008.
  3. K. Jimbo, R. Kimura, T. Kamimura et al. Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films,515(15), 5997-5999, 2007.
  4. J. Britt, and C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters,62(22), 2851-2852, 1993
  5. S. A. Khalate, R. S. Kate, and R.J. Deokate, A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency. Solar Energy, 169 (2018), 616–633, 2018.
  6. M. Green, K. Emery, Y. Hishikawa et al. Solar cell efficiency tables (version 48), 2016
  7. B. L. Guo, Y. H. Chen, X. J. Liu et al. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Advances,4(9), 097115, 2014.
  8. H. Katagiri, K. Saitoh, T. Washio et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells,65(1), 141-148, 2001.
  9. Q. Guo, H. W. Hillhouse, and R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc,131(33), 11672-3, 2009.
  10. J. He, L. Sun, N. Ding et al., Single-step preparation and characterization of Cu2ZnSn(SxSe1−x)4 thin films deposited by pulsed laser deposition method. Journal of Alloys and Compounds, 529(Supplement C), 34-37, 2012.
  11. C. Shi, G. Shi, Z. Chen et al., Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source. Materials Letters, 73(Supplement C), 89-91, 2012.
  12. T. Washio, T. Shinji, S. Tajima et al., 6% Efficiency Cu2ZnSnS4- based thin film solar cells using oxide precursors by open atmosphere type CVD. Journal of Materials Chemistry, 22(9), 4021-4024, 2012.
  13. M. Banavoth, S. Dias, and S. B. Krupanidhi, Near-infrared photoactive Cu2ZnSnS4 thin films by co-sputtering. AIP Advances,3(8), 082132, 2013.
  14. K. Tanaka, Y. Fukui, N. Moritake et al., Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Solar Energy Materials and Solar Cells, 95(3), 838-842, 2011.
  15. Z. Yan, A. Wei, Y. Zhao et al., Growth of Cu2ZnSnS4 thin films on transparent conducting glass substrates by the solvothermal method. Materials Letters, 111(Supplement C), 120-122, 2013.
  16. T. K. Todorov, J. Tang, S. Bag et al. Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells. Advanced Energy Materials, 3(1), 34-38, 2013.
  17. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials 4(7), 201301465, 2013.
  18. P. Jackson, D. Hariskos, R. Wuerz et al., Cover Picture: Properties of Cu(In,Ga)Se 2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi RRL 1/2015.
  19. G. Y. Kim, D.-H. Son, T. T. T. Nguyen et al., Enhancement of photo-conversion efficiency in Cu2ZnSn(S,Se)4 thin-film solar cells by control of ZnS precursor-layer thickness. Progress in Photovoltaics: Research and Applications. 24(3), 292-306, 2016.
  20. D. B. Mitzi, T. K. Todorov, K. Wang and S. Guha, The path towards a high-performance solution processed kesterite solar cell. Solar Energy Materials and Solar Cell, 95, 1421–1436, 2011.
  21. B. Shin, O. Gunawan, Y. Zhu et al., Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 21(1), 72-76, 2013.
  22. A. Walsh, S. Chen, S.-H. Wei et al., Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Advanced Energy Materials, 2(4), 400-409, 2012.
  23. A. Polizzotti, I. L. Repins, R. Noufi et al., The state and future prospects of kesterite photovoltaics. Energy & Environmental Science, 6(11), 3171-3182, 2013.
  24. S. Chen, A. Walsh, J.-H. Yang et al., Compositional dependence of structural and electronic properties of Cu(2) ZnSn(S,Se)(4) alloys for thin film solar cells. Physical Review B, 83(12), 125201, 2011.
  25. K. Hironori, J. Kazuo, Y. Satoru et al., Enhanced Conversion Efficiencies of Cu2ZnSnS 4 -Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express, 1(4), 041201, 2008.
  26. W. C. Hsu, I. Repins, C. Beall et al. Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths. Progress in Photovoltaics: Research and Applications, 22(1), 35-43, 2014
  27. A. Fairbrother, E. Garcia-Hemme, V. Izquierdo-Roca et al., Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. J Am Chem Soc, 134(19), 8018-21, 2012.
  28. M. Rahman, N. Islam, R. Matin & M. Bashar. Fabrication and characterization of the CZTS thin film absorption layer using easy and low cost sol-gel dip-coating technique. DUJASE, 6(1), 58-65, 2021.
  29. M. Rahman, M. Bashar, & N. Islam. Optical and structural study of the CZTS (Cu2ZnSnS4) thin film for solar cell derived from the chloride-based sol-gel precursor solution. Dhaka University Journal of Science, 70(1), 1–7, 2022.
  30. C. Platzer-Björkman, J. Scragg, H. Flammersberger et al,. Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells. Solar Energy Materials and Solar Cells, 98(Supplement C), 110-117, 2012.
  31. Z. Guan, W. Luo, and Z. Zou, Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode. CrystEngComm, 14, 2929- 2936, 2014.
  32. M. Jiang, Y. Li, R. Dhakal et al., Cu2ZnSnS4polycrystalline thin films with large densely packed grains prepared by sol-gel method. J. of Photonics for Energy, 1(1), 1-6, 2011.
  33. I. Kentaro, and N. Tatsuo, Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Japanese Journal of Applied Physics, 27(11R), 2094.
  34. J. S. Seol, S.-Y. Lee, J.-C. Lee et al., Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Solar Energy Materials and Solar Cells, 75(1), 155-162, 2003.
  35. T. K. Todorov, K. B. Reuter, and D. B. Mitzi, High-efficiency solar cell with Earth-abundant liquid-processed absorber. Adv Materials, 22(20), E156- E159, 2010.
  36. K. Tanaka, M. Oonuki, N. Moritake et al., Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells, 93(5), 583- 587, 2009.
  37. A. Fischereder, T. Rath, W. Haas et al., Investigation of Cu2Zn- SnS4 formation from metal salts and thioacetamide. Chemistry of Materials, 22(11), 3399- 3406, 2010.
  38. S. M. Pawar, B. S. Pawar, A. V. Moholkar et al., Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 55(12), 4057-4061, 2010.
  39. H. M. Pathan and C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science, 27 (2), 85-111, 2004.
  40. J. A. Thornton, The microstructure of sputter-deposited coatings. Journal of Vacuum Science & Technology. 4(6), 3059- 3065, 1986.
  41. K. Tanaka, N. Moritake, and H. Uchiki, Preparation of Cu2Zn- SnS4 thin films by sulfurizing sol-gel deposited precursors. Solar Energy Materials and Solar Cells, 91(13), 1199-1201, 2007.
  42. B. S. Pawar, S. M. Pawar, S. W. Shin et al., Effect of complexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films. Applied Surface Science, 257(5), 1786-1791, 2010.
  43. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice- Hall, Pearson, 2001
  44. Y. Zhao, H. Pan, Y. Lou et al., Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper( I) sulfides. J Am Chem Soc,131(12), 4253-61, 2009.
  45. G. M. Ford, Q. Guo, R. Agrawal et al., Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chemistry of Materials, 23(10), 2626-2629, 2011.
  46. R. Caballero, C. Maffiotte, and C. Guillén, Preparation and characterization of CuIn1−xGaxSe2 thin films obtained by sequential evaporations and different selenization processes. Thin Solid Films,474(1), 70-76, 2005.
  47. S.C. Riha, S. J. Fredrick, J. B. Sambur et al., Photoelectrochemical characterization of nanocrystalline thin-film Cu2Zn- SnS4photocathodes. ACS Appl Mater Interfaces, 3(1), 58-66, 2011.
  48. A. Wangperawong, J. S. King, S. M. Herron et al., Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 519(8), 2488-2492, 2011.
  49. Q. Guo, G. M. Ford, W.-C. Yang et al., Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. Journal of the American Chemical Society, 132(49), 17384-17386, 2010.
  50. S. A. Nazligul, M. Wang and L. K. Choy, Recent Development in Earth-Abundant Kesterite Materials and Their Applications. Sustainability, 5138(12), 1-19, 2020
  51. O. A. M. Abdelraouf and N. K. Allam, Plasmonic scattering nanostructures for efficient light trapping in flat CZTS solar cells. Proc. of SPIE, 10227 (12), 1-9, 2017.