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Data Mining Based Motif Detection in Biological Sequences
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Abstr:rct

This pape,. considers the probtem of discov€ring rnotif in DNA anrl proteir scqu€nces. Nloti{ finding problen has inrportant

oppri"ution, in understanding genc regrlat;on. protei!r larn;lJ, identificrtion and dctermination of functionalll and sn'ucturallv

im;ortant id€ntities. Biologiiai approaches for (his problem xre Iong-winded. complcx ,nd time-consrming. Her€. we htve

devcloped a method based on data min;ng to dete(t lf€qucnt r€sidue motils. our proposed method is bas€d on FP-tree and FP-

growtt; atgorithms of Irequcnt prtrern rniiiing techniqucs. I he liInitation of iterativ€ nature of eristing Apriori bascd method has

;""" ",",i""r" 
in th€ dcyetop€d pF-tree baied method. Also lre hare dev€loped a tool based on propos€d Nethod which can

expeditiously d€tect noret motifs basea on ;nformnlion content and sho$s bettcr performance oler lhe existing Apriori based

m;thod. Experimental rcsults show that this new mcthorl successfully elucidates true motifs on real biological s€quenc€ datas€ts

which support the effect;veness of the method.
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l.Introduction

Motifs are short and preserved patterns tllat are part of a

family of sequences. Motif can be used as protein i'unction

identification, gene regulation and n.nny othel essential task

of sequence analysis. Sequence alignment may not identify

closely related protein or genes of unklown slructtne but it
can be found tlore accurately by the occunence in its

sequence of particnlar residue pattern, nlotrf ol- fingerprint'

Some regions are preserved because of specil-lc

requirements on the structure of particular region of ptotciu

rvhich may be cmcial.

Motif can be discovered as subsequences that are comn-Ion

to the fanily of sequences from scquencc patlcnls (sub-

setluenccs). Since the dramatic increase of gcnetic data. data

-rrring have become essential to the analysis of protein and

nucleic acid sequences. As a result, numbers of bio-data

mining tecluriques have been developed ln this paper. $'e

demonstrate how FP-tree shucture and FP-gro$4h algorithm

of data mining technique can be used for motifprediction

Existing motif finding algorithms can be classified into two

groups;uch as combinational and probabilistic PRATT Lll
i"a iurulsras [2] are example of combinational method

MEME [3] and Gibbs 14] search for motif using statistical

approach and these are probabilistic methods. Over a long

p.iioa or time there have been developed hundleds of
metirods but among them Grbbs and MEME are the most

wideiy used m€thods. These algorithms successfully iinds

motil in biological sequences, but no algorithm works

perfect as the motif discovery problem is complex and very

iifficult to solve. The limitation of MEME is that it takes a

lot of time. Again Gibbs algorithm suffers from the random

search behavior rvhich means it generates differcnt motifs in

every cxecution. BioPM [5] is a vety efficient proteiD

sequential pattern mining algorithm based on prefix

projected mithod. It uses a new data stucture BioP-tree and

its iesearcher claimed better perfomance over Apriori based

method. But still there is a problem of choosing minimum

support tlneshold. H. G. Ozer and William C R. [6]

Droposed an algorithm called jnfotmatlre molils to find

fr"qr"nt r".,du" ntottfs that are hitsh in lnformation conlent

ancl outside of the family consensus. It has modified classic

Apriori algorithm to mine frequent residue pattern CRMD

l?] employs a flexible statistical motif model allorving a

variable number of motifs and motif instances lt Urst uses a

novel entropy-based clustering to find complete atrd good

starting candidate motifs fiom the DNA sequences; then

uses an effective greedy refinement to search for optimal

motifs from the candidate motifs.

2. Basic Experimental TheorY

Frequent-pattern growth or simply FP-growth lE] adopts a

divide and-conquel strategy whicll works as fbllows First'

it compresses the database into a frequent-pattem trec or IiP-

tree rcpresenting fiequent items, \\'hich retains the itemset

association information. It then divides the compresscd

database into a set of conditional database; each associated

rvith one frequent item or "pattetn fragment" and mines

each sucb database separately.

FP-tree is constntcted using prefix{ree stTucture with some

extentled in structure. It wtll be used for storing crucial,

quantitative information about frequent patterns. Only

liequent length-l items will have nodes in the tree, and

moie lrcquently occurring nodes will have better chances of
sharing nodes lhan les( trequenll) occt(rlng ones

We have exploted motif discovery problem by applying the

teclmiques of data mining Many tlpes of data mining

opp.o"ih". have been used in motif discovery. Apriori and

pi.fix bot.,l trce are many of those existing approach

Frequent pattern growth algorithm (FP-growth) is very

efficient than Aprioli and prefix based tree method' It scans

the database only twice to generate frequent patterns This is

why rve have applied this method in our motif discovery

approach along with some other initial and post mining

filtering and selecting methods

3. Methodology

Given a lalge dataset of N biologrcal sequence Sl S:, S'r,

our goal is to identify thc conserved regions that represent

this dataset. We have followed a speciltc procedure to

identify these conserved legions Our algorithm is designed

to proceed in the following pathway-

L Select initial set offit subsequences

IL Align ltt subsequences

III- Generate transactions from subsequences
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and

IV. Construct frequent pattem tlee (FP-tree) ftom
transactions.

V. Minc pattelns using frequent pattem glorvth (FP-
grou,th) aigorithm.

VL Filter and select motiMiom patterns.

3.1 Select Initial Set of Fit Subsequences

A set of initial subsequences is collected which are patterns
of a flxed length / and presented in cefiain numbcr oi input
sequences. Subsequences should be statistically significant
because motifs are more ftequent than random pattems. To
neasure statistical signihcance of a pattem u'e have used

second order Markov chain model. Let .r be a biological
sequence e.g..r = !/-r....!r. The probability oi r fbr a given
sccond orcler Markov model M is:

P11(t1 - I7t, I P(1, \,:r, i)
Wlrere P(r; -r ;tal - P(\t) and P(x: x'r,l : P(rj rr/ if .r, and
,:7 are not available. The probability ofr for a grven random
nrodel R is Pp(:i1 l7',=1 PfrJ. Ihen the Log odd score of the
secluence .r-, dcnotcd E/r). is defined as El\) -
log(Ptlx)/PR6)). We have oriy picked those subsequences
u,hose log odd score is greater tben tlreshold T i.e [(tI>T
Ploposcd algolithn for selccting initial 1it subsequcnccs:

Input: A sel 01 sequences (5')

Output: A set of fit subsequences (Q)

SelectFitSub0l

Qs: t'|

Q,.: LJ

//qualilied subsequence set

//srLbsequence set of 0r:4)
while( p, < number ofseciuences) |

0-\: fit -subsequenc es(./, T, S-Q,.) U Q5

I

fit subsequerces(/, I, 5"){
Ftnd P. n4rere E(x) >T and length is / in sequence

set S':
Rank S' according to the number of Q-,. rn each

sequence:
S": Substring (57?):
fbr cach qualified subsequence p rn 5"

Q'=Q'U{Q}:
renlrn S"

3.2 Align Fit Subsequerces

In this step we have aligned those fit subsequences. Scoring
or weight matrix is a very good method for represeuting the
variation in a set of sequence pattems in a multiple sequence
alignn.ient and as a tool for finding additional sequences in
database search. Odd score can be uscd to find the
probability of each subsequence location. We hare used

BI-OSIIM62 scoring matrix to align those subsequences
which rvas aligned by pair wise alignnent.

3.3 Generate Transactions from Subsequences

The information content of a candidate motif is calculated
by generating posrtion weight matrix (PWM) from rt. In
DNA sequences the nratrix has fbur columns representing 4
possible nucleotides (A, T, G, and C) and for protein
sequences numbel of columns will be 20 representing 20

diffelent anuno :::i l. -:-:€: .:: . .:- :e equal
length of the s.-:':'::-=:-=. a-- :,::::: ..i ha\e
nucleotide subs:; -::-: = 

, : r' :- - .t,ie I

coresponding P\\-\l :- -:: : l

Table 1: subsequencer

Table 2: Corresponding P\\ \l rli rh. gi\ en subsequences

In general. lh3 a\ari_:: :::l- j:: :: ::-: ':::uiron in bits per
resrduc tbr.ol.]ri'*. i oi --.-. P i \: .: .:-ar ': ..

Where P. is the iieq:re:::_. .-: r:i:-.- ,::i\ucleotidc i in
columl c and rs estrma:ei b', li: tr:q,Lerc1, oioccunence of
each amino acid \ucleonde S:r;: !\ e l anl lo eatract motifs
*hich are speclal n.oe o: par:ens. le ehmrnated residues
*ith probabilrtie: smaller than 0l to aroid umecessary
computatrons. Then. each subsequence \\rth ils remaining
residues is recorded as a transaction lnlo the transactlon
database Table -1.

Table 3: Transactions from subsequences using PWM

3.4 Construct Frequenl Pattern Tree (FP-tree) liom
Transaction

In this step rv€ have constructed a special hee like structure
called fiequent pattem tree (FP-tree) (Figure 1) from the
transaction database. This is the compact structure which
only stores the frequent patterns depending on support count.
The FP-tree construction method includes followrng steps:

Step I: Scan the transactions once and collect the set of
frequent items (1-itemsets) based on minimum support and
their suppoft count.
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Step II: Now sort fiequent l-itensets according to tireil
support counl in descending order.

Step III: Create the root ofan FP-bee and label i1 as "null".

Step IV: For each transaction; select and sort the fiequent
items according to the descending order of tl'le support count.

Step V: Now call theh tree insert([plP], T) where [p P] is

transaction and Z is the FP-tree.

Step VI: For any remaining transaction in database go to
Step Iy' to insert it into FP-tree Z.

Method fp nee_inset((fplPl, 7l {

Il (I has a child N such that N.iten1.1ame=p item
rlarre) Then

Inclement N's count by 1;

Else Then

Create a new node N. and let its count be
1; Its parent linl is linked to I;

link to the nodes with the same item-name
via the node-link structure.

Endlf

If (P is nonempty)

Call fp tree insert(g,Ui

Fig. 1: Constructed FP-tree from Transactions.

3.5 Mine Patterns using FP-growth Algorithm

The mrning of the FP-tree proceeds as foilows. Startillg
fiom each frequent length-l paftern; first its conditional
pattern base (a sub database which consists of the set of
prefix paths in the FP-tree co-occurring with the suffix
pattem) is conshucted, then mine frequent patterns

recursively using conditional pattern tree. FP-growth us€s

the least frequent ltems as a suffix, offering good selectivity.
The method substantially reduces the search costs. This FP-
growth algorithm is given bellow:

Procedure FP-growth (Tre e, a)

41

i

if Tree contains a single prefix path then .l

for each combination (S) of the nodes in the path P
do

generate pattem S U a with support =
mlnimum support ofnodes in S;

) else for each item ai in Q do {

generate pattem p= a; l-J a with suppolt:
ai.supporl;

construct f's conditional pattern-base

then /'s conditional FP'luee TreeP I

if TreeB + 0

then call FP-growth(Treep ,p);

l

Our FP-growth algorithm has some differences \\'ith existing
FP growth algorithm. In the modified algorithm all the
items of the conditional patteru base remain in the
conditional pattem hee and we only accept the largest
frequent pattern generated by the conditional FP-tree.

3.6 Filter and Select Motifs from Patterns

We have to convefi the fi-equent pattern into a DNA or
protein sequence by using their column number associated
with them. We lurther filter our frequent pattem to get our
expected motii We have used similarity scores to get the
hxe motif. This filtering process can be done in diffetent
ways. First, we may get scveral same length frequent
pattems. Then we have to rearrange and check whether all
of them are a single motif or not. Such as if we get threc
frequent pattems like ACGCGT, ACGCGT, and ACTCGA;
they are not two different motifs but same and consensus

sequence is ACGCGT. Second, we may miss any cohtmn
from transaction because of mutation in that colurDr. We
have to get the help of PWM to get that column and
generale motif by using thrl column.

4, Experiments

In ordel to evaluate the couectness and efficiency of our
proposed algorithm, we have developed a tool using java
and tested that tool on collections of various DNA and
protein sequences. DNA sequences were taken from
TRANSFAC database and protein sequences from
PROSITE database. To compare our algorithm against other
established motif-discovery algor-ithms, we have used Gibbs
motif sampling algorithm [9] and MEME [10] on the same

test set. Standard parameters for proposed method are

Threshold value I:0.05 a\d Mi support coun=3jTo.
Runtime comparison witir MEME algorithm is shown in
Figure 2,3 & 4. The avemge sensitivity reported by the
three algorithms is plotted in Figure 5.
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Fig.2: Runtime Compaflson wrth MEME Algorithm for yst04r DNA Dataset
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Fig.3: Iiuntime Comparison wrth N4EN.4E Algorithm fol yst08r DNA Dataset

Fig.,l: Runtime Comparison with MEME Algorithm for Protern Dataset

12 19

Fig.5: Average Sensitivity Reported by the Three Algorithms

5. Discussion

As is evident from the graphs, the outcome of the thJee

algorithms is comparable. Our proposed method has better
runtime performance in all cases with compare to MEME
algorithm. In case of sensitivity, our proposed algorithm has

better performance in protein dataset but in DNA dataset
MEME and Gibbs have better average sensitivity. Anoth€r
advantage of our proposed algorithm is that it needs fewer
paramet€rs. However, we also emphasize that our method
does not need to krow number of motifs expected this is a
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quite advantage when there is no information available
about dataset. To calculate runtime we run both MEME and

our proposed algorithm in an Intel Core 2 Duo Linux
machine having 4GB of memory.

6. Conclusion

The proposed method is a hybrid method which combiaes
two methods of different area into bioinformatics problem.
Previously some researchers have used data mining
techniques in motif discovery and our proposed method
performs better than those. The existing methods which
used Apriori based algorithm need a lot of database scans

where our proposed method needs only two database scans

and it removes the major drawback of the Apriori based

method. This is a significant advantage over existing motif
discovery algorithms that it hnds motif without being
instructed on how many motifs should be discovered.
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