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ABSTRACT
This paper presents an investigation into the development of a cancer model for chemotherapy drug scheduling using
Particle Swarm Optimization (PSO) algorithm. PSO is a population-based search method whose mechanics are
inspired by the ability of flocks of birds, schools of fish, and herds of animals to adapt to their environment and find
rich sources of food by implementing “information sharing” approaches. The main aim of chemotherapy treatment
is to reduce the tumor size to a desired minimum level so that cannot be detected in vivo clinically. 'Mouse' and
'Human' models developed by de Pillis and co-workers in 2006 are used to design chemotherapy drug doses and
observe its effects on different cell populations. Besides chemotherapy, these models are also used to study the effects
of immunotherapy, anti-angiogenic therapy or combinations of these. Chemotherapy drug scheduling is designed as
optimal control problem based on these models and PSO is used to find drug doses for specific intervals and periods
relevant to clinical practice. Results show that the employed method can generate a wide range of solutions that
trade-off between cell killing and toxic side effects and satisfy associated goals of chemotherapy treatment.

Keywords: Cancer, Chemotherapy, Control, Drug
Scheduling, Particle Swarm Optimization.

1. Introduction

Cancer is a group of disease characterized by abnormal
proliferation of cells, usually in a random, disorderly
manner. This uncontrolled growth results a malignancy and
tumors are formed. These affect healthy tissues and organs
and interfere with the proper functioning of the affected
organs (Pecorino, 2012). Chemotherapy takes the advantage
of the rapidly proliferating nature of cancer cells. However
healthy tissues, such as white blood cells, intestinal mucosa
etc. also proliferate sufficiently and are affected by
chemotherapeutic treatment and produce a negative side
effect which must be kept under control. Such therapies may
be combined with the other therapies like anti-angiogenesis
and immunotherapy. The dose and frequency of drug
admission is the most crucial part of the cancer treatment
(Chabner and  Longo, 2011).

The purpose of a mathematical model of cancer
chemotherapy (Bellomo, et al., 2008) is to predict and
control the disease using a drug. The reasons why a good
mathematical model is very useful are many. It is often
faster and cheaper to develop a mathematical model and
simulate it on a computer than perform a laboratory work or
make clinical trial. Once a mathematical model is found that
fulfills requirements, then one may focus on the design of an
improved treatment protocol. The goal of chemotherapy is
to destroy the tumor cells, while maintaining healthy tissues.
Therefore, the development of a chemotherapy protocol can
be phrased as an optimal control problem with constraints:
for a fixed time interval, find the points within that interval
at which the drug should be administered so that the number
of tumor cells has been minimized, while the number of
healthy cells has been kept above a prescribed threshold
(Algoul, et al., 2011, Nadia, et al., 2013).

2. Mathematical Modeling of Cancer and Tumor

de Pillis and co-workers (2006, 2009) used empirical data to
develop cancer tumor growth models with chemotherapy
and immunotherapy drugs for mouse and human. A set of
differential equations have been derived, where each
equation gives the rate of change of the particular cell
population in terms of growth and death, cell-cell kill, cell
recruitment, and cell inactivation. For simplicity, we omit
the time dependency of states and controls equations are
(Engelhart et al., 2011):̇ = (1 − ) − −− (1 − ) , (1)̇ = − + ℎ + −− (1 − ) , (2)̇ = − + + − + ( + )− − (1 − )+ + , (3)̇ = − − (1 − ) , (4)̇ = − + , (5)̇ = − + , (6)= ( ⁄ )( ⁄ ) , 0 ≤ , , , , , , 0 ≤ , , ,[ , ]
Models consist of six states, three controls and 29
parameters in three parameter sets. The models also contain
a combination of chemotherapy and immunotherapy. The
six different states of models are: (i) Tumor volume x0 -
tumor population measured in absolute cell count, (ii) NK
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cells x1 – unspecific immune cells which are also present in
a healthy body, “natural killer” cells. Measured in cells/L,
(iii) CD8+T cells x2 – tumor specific immune cells (cells/L),
(iv) Circulating lymphocytes x3 – white blood cells
(cells/L), (v) x4- chemotherapeutic drug concentration
(mg/L) and (vi) x5- interleukin-2 concentration(IU/liter). IL-
2, a naturally produced molecule, is a widely administered
immunotherapy drug, particularly for cancer. The activity of
this molecule is often included in immunological models of
cancer treatment. IL-2 is a cytokine that stimulates CD8+T
activation cells and is used to boost immune system
function. Although IL-2 promotes the proliferation of T-
cells, it also shortens their lifespan (Moore, 2007). In
addition, there is a control for a classic cytostatic drug u0
and one for a tumor infiltrating lymphocyte injection (TIL)
u2. The latter means an injection of CD8+ T cells that have
been stimulated against tumor cells outside the body.

3. Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm is simple in concept, easy to implement
and computationally efficient. The original version of PSO
can be implemented as follows (Eberhart and Kennedy,
1995):

1. Initialize a population of particles with random
positions and velocities on d-dimensions.

2. For each particle, evaluate the desired optimization
fitness function in d variables.

3. Compare particle's fitness evaluation with its pbest. If
current value is better than pbest, then set pbest equal
to the current value, and Pi equals to the current
location Xi .

4. Identify the particle in the neighborhood with the best
success so far, and assign its index to the variable
gbest. Compare this gbest with the populations
overall previous best. If the current value is better
than gbest, then reset gbest to the current particle’s
array index.

5. Change the velocity and position of the particle.
6. Loop to step 2) until a criterion is met, usually a

sufficiently good fitness or a maximum number of
iterations. The velocity and position of the particle in

step (5) are changed according to the following
equation respectively:= + ()( − ) + ()( − )

(7)= + (8)

Where,  c1 and c2 are cognitive and social parameters, rand()
and Rand() are two random functions in the range [0,1], g is
the index of the best particle among all the particles in the
population, Xi = (Xi1, Xi2,……, Xid) represents the ith
particle position,  Pi = (Pi1, Pi2,…….., Pid) represents the best
previous position of the ith particle and Vi = (Vi1, Vi2,…….,
Vid) represents the rate of the position change (velocity) for
ith particle. It has been demonstrated that the optimal
solution can be improved by varying the value of from
0.9 at the beginning of the search to 0.4 at the end of the
search for most problems. If the sum of the three parts on
the right side of eq.(7) exceeds a  value specified by user,
then the velocity on that dimension is assigned to be ±Vmax,
that is, particles' velocities on each dimension is clamped to
a maximum velocity Vmax, and it is the only parameter
required to be adjusted by users. A well designed
dynamically changing Vmax might improve the performance
of a PSO.

4. Chemotherapy Drug Scheduling Using PSO

Model–based control is currently considered the state–of–
the–art in the field of process control and it is an active
research field for drug scheduling of different chronic
diseases including cancer (Harrold and Parker, 2009). In this
paper, first tumor growth models developed by  de Pillis and
co-workers (2006) are implemented then  based on models
chemotherapy drug scheduler designed using PSO that
would produce an improved outcome by reducing final
tumor size without causing large losses in the normal cell
population. Figure 1 shows the schematic diagram of drug
scheduling design.

Figure 1: Schematic diagram of drug scheduling scheme
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Implementation

PSO algorithm works on the social behavior of the swarm.
PSO optimization process begins with randomly generated
candidate solutions called particles. In this research work,
MATLAB & SIMULINK (The Mathworks, Inc., 2015)
have been used to encode and implement the desired drug
dose and optimization process. For the optimization of the
process the maximum number of generation is set at 300.
Then this designed dose obtained is applied to the model
and the number of different types of cells are counted  at the
end of the each treatment cycle  to see the effect of various
dose and to determine the effectiveness of the dose schedule
designed by PSO algorithm.

5. Results

In this paper, chemotherapy drug schedules are designed for
'mouse' and 'human 10' models and results are shown and
discussed in following sections. It is noted that, values of
parameters for 'mouse' and 'human 10' models used in this
paper were collected by Engelhart and co-workers (2011)
from various sources treating different types of cancer and
different types of mice.

Mouse Scenario

For the treatment of mouse only the chemotherapy is
applied mouse model with maximum dose of 1. The
chemotherapy drug is applied for 42 days i.e. for 6 weeks in
a cycle of 7 days. In this method PSO is designed to take the
decision to apply/not apply the drug. If it decides to apply
drug then also controls the amount of drug. It is designed to
administer drug for cumulative 4 days of a week and the
remaining three days is considered as rest period for the
balance of healthy cells. With this technique of drug
schedule to assess the reproducibility of the PSO the same
model is run 10 times and at the end of the each treatment
period the number of different cells are counted. Table 1
shows the percentage of cell change due to the effect of
chemotherapy.

Table 1 shows that for most of the run the cancer cell
population changes in between 37% and 39%. Whereas
maximum reduction of cancer cell population occurs in run
5 and it is 38.75% and minimum cancer cell reduction
occurs in run 7 which is 12.35%.  Except run 7 all the run
shows the average result for reduction of tumor cells. Figure
2 graphically shows the reduction of cancer cells for
different drug doses generated by the program of the PSO.

Table 1: Percentage of cell population changes due to the effect of chemotherapy

Run no Tumor cells reduction NK cells increment Cir. lymphocyte reduction
Run1 33.15% 88.77% 39.55%
Run2 38.23% 78.32% 42.13%
Run3 37.93% 78.87% 41.97%
Run4 38.15% 78.48% 42.08%
Run5 38.75% 77.41% 42.41%
Run6 38.34% 78.14% 42.19%
Run7 12.35% 112.24% 28.13%
Run8 37.67% 79.35% 41.83%
Run9 37.82% 79.07% 41.91%

Run10 38.61% 77.66% 42.33%

Fig. 2: Cancer cell reduction for different run
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The main objective of the chemotherapy is to reduce the
cancer cells with minimum side effects i.e. to reduce the
cancer cells while the other healthy cells remain above a
certain minimum level. The maximum reduction of cancer
cells occurs in run 5 and in this case NK cells are increased
by 77.41% and reduction of circulating lymphocytes is
42.41%. This shows that with the maximum reduction of
cancer cells the other cells remain on the average level.
Compared with other runs this run shows the better solution
with maximum cancerous cells destruction and tolerable
minimization of the circulating lymphocytes. So this dose of
chemotherapy can be considered as a best dose for
chemotherapy treatment. The chemotherapy drug dose and
the corresponding response of the cell populations to this
drug dose are shown in figure 3. This figure shows that the
maximum dose applied at first week is 1.0 and the minimum
applied dose is 0.6. With this applied dose cancer cells
reduces from initial value 106 to 6.1251×105 at the end of
the 42 days treatment period. Circulating lymphocytes cells
which are the important cells for healthy body are also
decrease with the reduction of cancer cells. Initial value of
the circ. lymphocytes for mouse is 1.1×107 while at the end
of the treatment period it reaches 6.3343×106. Reduction of
circ. lymphocytes is one of the side effects of chemotherapy
which must be controlled to reduce toxicity level.
Human Scenario

For the drug scheduling, the chemotherapy dose generated
by PSO algorithm is applied to the to the 'human 10' model.

In this case the maximum dose of chemotherapy applied is
limited to 5.0. 'Human 10' model contains chemotherapy as
well as immunotherapy. In this drug scheduling process
immunotherapy is considered as almost zero and only the
chemotherapy is applied. The chemotherapy is applied for a
treatment period of 40 days. Like the mouse model PSO
algorithm is used here to take the decision to apply or not
apply the therapy. If the decision is taken to apply the drug
then amount of drug to be applied is also adjusted by the
program of PSO.  In this case it decided to apply the drug
for cumulative four days of a week. The remaining three
days are considered as rest period for the recovery of the
healthy cells so that toxicity of chemotherapy to the body
organs is reduced. To obtain the useful drug the ‘human 10’
model is run 10 times.  At the end of the each treatment the
number of cell for different cell types are counted to observe
the effectiveness of the drug dose generated by PSO. Table
2 shows the percentage of cell number change that makes
easy to understand the activity of the drug. It is observed
that for most of the runs, percentage of cancer cell changes
vary from 39% to 40%. It proves the repeatability of the
PSO algorithm. The maximum cancer cell changes occur in
run 6 which is 40.05% and minimum cancer cell changes
occur is 37.70% and it occurs in run 7. For NK cell,
maximum number of cell changes occurs in run 6 which is
41.93% and minimum cell number changes is 40.54% and
occurs in run 7.

Fig. 3: Response of different types of cells due to chemotherapy applied to mouse model
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For all cases the difference in number of cell changes is very
small. In case of circulating lymphocytes maximum number
of cell changes occurs in run 6 which is 31.44% and
minimum number of cell changes 29.49% occur in run 7.
Now the result obtained from Table 2 represents that the
percentage of cell number changes for different run is very
small. So it is to be noted that the dose generated by PSO is
very similar and effect of these dose in different cell
population is also similar. As run 6 gives the maximum
changes in cancer cells, the drug schedule generated by this
run and the response of different types of cells to this drug
schedule is shown in figure 4. Figure 5 shows that as

chemotherapy is applied to the ‘human 10’ model the cancer
cells decrease with time and in 40 days treatment period it
reduced from initial value of 1×105 to 5.9953×104 i.e. it
reduced about 40% from its initial value. The chemotherapy
has maximum dose of about 5.0 and is applied in first,
fourth and fifth week. The minimum dose applied is 4.0 and
it happens in third week. Circulating lymphocytes the most
important cells in human is also reduced due to the
application of chemotherapy. Its initial value in ‘human 10’
is 6×1010 and due to the chemotherapy it reduces to
4.1134×1010 at the end of 40 days treatment.

Table 2: Percentage of cell population changes in ‘human 10’ due to chemotherapy.

Run no. Reduction of cancer cells at
the end of treatment

Reduction of NK cells at
the end of the treatment

Reduction of Circ. Lymphocytes
at the end of treatment

Run 1 39.36% 41.53% 30.88%
Run 2 39.34% 41.54% 30.87%
Run 3 39.28% 41.48% 30.79%
Run 4 39.94% 41.87% 31.35%
Run 5 39.68% 41.71% 31.13%
Run 6 40.05% 41.93% 31.44%
Run 7 37.70% 40.54% 29.49%
Run 8 38.78% 41.20% 30.38%
Run 9 39.97% 41.88% 31.38%

Run 10 39.69% 41.72% 31.14%

Fig. 4: Cancer cell reductions for different run

Drug doses/days

Fig. 5: Response of the different types of cells to the chemotherapy generated by run 6
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6. Conclusions

In this work particle swarm optimization is used as a control
to develop a drug schedule process. The main objective of
this proposed drug schedule procedure is to develop an
effective cancer treatment drug schedule technique to reduce
the cancer cell in a biological system. The treatment
schedule produced using PSO has been used to analyze the
effect of the chemotherapy on different cell population.
Genetic Algorithms have some limitations such as
complexity in algorithm, huge parameter estimation, large
computation time, slow convergence. But PSO is a
relatively new evolutionary algorithm and it has small
parameter to be estimated, faster convergence, lower
computational cost and easier to implement. So PSO can be
used as very efficient tool for drug dose scheduling as
reported in recent literature (Alam et al., 2010, 2013). It is to
be noted that the obtained drug schedule is square wave in
nature having ups and downs to control the tumor
population cells on a minimized level and to keep the others
cells   above a threshold value. Furthermore, the same
control strategy can be extended for multidrug or
combination chemotherapy scheduling for more efficient
cancer treatment.
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