
DUJASE Vol. 6 (1) 6-15, 2021 (January)

An Attribute Selection Process for Cross-Project Software Defect Prediction

Md. Habibur Rahman
1
, Sadia Sharmin

2
, Md. Shariful Islam

1*
, Shah Mostafa Khaled

1
 and

Sheikh Muhammad Sarwar
1

1Institute of Information Technology, University of Dhaka
2Dept. of Computer Sci. and Eng., Islamic University of Technology

*E-mail: shariful@iit.du.ac.bd

Received on 12.05.20, Accepted for publication on 14.6.21

ABSTRACT

Software defect prediction is a key research area in the domain of software quality estimation. Usually, software

attributes are used for building a defect prediction model and a specific prediction model can produce positive,

negative, or neutral outcomes depending on the characteristics of these attributes. Therefore, choosing an optimal set

of attributes for the development of a defect prediction model remains a vital yet relatively unexplored issue. To

address this issue, we propose a technique for attribute selection to improve the accuracy of software defect

prediction for both within project and cross-project. Experimental results using the data sets from Relink and NASA

MDP repository demonstrate the superiority of the proposed algorithm.

Keywords: Software testing, Cross project defect prediction, Software quality.

1. Introduction

Software quality depends on the identification of the

number of defects in software. Proper identification of

software defects may help in improving the quality of the

software. If the defective part of the software code can be

identified, then the software test engineer can take

important steps to inspect only that portion of the code. It

will also be helpful for a project manager for resource

allocation. A software defect prediction model works to

identify the error-prone parts of the software. If a defect

prediction model works as intended, then software testing

time may be reduced, as well as development cost may be

decreased. Thus, it will help a company building better

quality software with their limited resources.

Software modules contain error-prone code which results in

incorrect output for a specific feature. These error-prone

codes are good candidates to build a set of software

attributes that can help to identify similar errors in other

code [1]. Some of the examples of these attributes are

cyclomatic complexity, lines of code, conditions count, etc.

They represent the characteristics of the software and are

responsible for a software module to be defected or non-

defected. Thus, defect prediction using software attributes

has been a common practice and a reasonable number of

defect prediction models have been developed following

different machine learning algorithms based on these

attributes. These attributes have an impact on the

effectiveness and performance of the defect prediction

model. However, all the attributes do not show the same

level of importance to describe projects' characteristics.

Among them, there are few which show redundant

knowledge and some others do not describe the project at

all. In recent studies [2], [3], it is also demonstrated that

removal of irrelevant and redundant features before

constructing the model enhances the performance of defect

prediction models. The irrelevant and redundant attributes

may be called noisy attributes and the defect prediction

model may produce questionable performance due to these

noisy attributes [4], [5]. However, it is not an easy task to

identify the presence of those noisy attributes using

machine learning models [6].

In defect prediction, researchers used several algorithms such

as Genaro et. al.[7]used logistic regression, Khoshgoftaar et.

al.[8] used decision tree, Park et. al.[9] worked with neural

networks, and Menzies et. al.[10] introduced Naïve Bayes

(NB)for their model. If a proper set of attributes are

employed for training, their results will be improved [11].

Thus, attribute selection has been regarded as an important

research topic in the software defect prediction domain.

Test data and train data are a must for any kind of machine

learning-based prediction technique. When a defect

prediction model considers test and train data from the same

project, it is called within project defect prediction. To build

a within project defect prediction model, the data repository

should be large enough to train the model. But some

companies do not track defect prediction data and for

constructing a new project the necessary historical data may

not be available, which makes the prediction model

infeasible. So, cross-project defect prediction is necessary if

training data are scarce and, in that case, the training data

comes from different projects. However, dissimilarity among

the distributions of the datasets is a core problem. So, the

distributions of the test and train dataset should be made

same for effective defect prediction. In cross-project defect

prediction, there are several works conducted in recent times.

Zimmermann et al. [34] mentioned cross-project defect

prediction as a serious challenge and concluded that using the

projects of the same domain (i.e., web browser) and different

companies (i.e. Mozilla/Google) has a very poor prediction

performance. Burak et. al [15] investigated the relative

performance of cross-project and within project defect

predictors and concluded that cross-project defect predictors

cannot supersede within project defect predictors. They also

demonstrated the minimum requirement of data samples for

an effective defect predictor. Nam et al. introduced transfer

learning and proposed TCA+, an extension of TCA (Transfer

Component Analysis) to improve the results in cross-project

defect prediction [16].

An Attribute Selection Process for Cross-Project Software Defect Prediction 7

In this paper, we introduce a new approach for selecting the

best set of attributes in software defect prediction. Our

proposed method conducts two stages of selection. At the

first stage, we rank each feature considering their pairwise

dependency, and the later stage finds the best set of

attributes following a forward search mechanism from the

ranking obtained from the first stage. Those selected

attributes are then used to construct the defect prediction

model. With a selection of appropriate attributes, we

achieve better accuracy on benchmark datasets with an

appropriate classifier.

For cross-project defect prediction, training and test data

comes from different project but should contain the same

attributes for both projects. As a result, the set of attributes

selected for training the model from one project is further

used in testing the model with another project. We observed

a reasonable improvement in the performance of cross-

project defect prediction model using the selected attributes.

We discuss the related work in the next section. Our

proposed methodology is discussed in section 3 and section

4 describes the experimental result. We conclude our paper

by suggesting some future work with section 5.

There are several attribute selection methods proposed by

researchers [17], [18], [19], [20], [21], [22], [23], [24] for

general applications. Jong [18] used support vector

machines (SVM) to propose feature selection method.

Ilczuk et al. [19]worked on why the attribute selection is

important. Forman [20] showed how multiple filter-based

feature ranking works for attribute selection. Software cost

and effort estimation was studied in respect of feature

selection in [21].

The attribute selection process has been utilized in different

kinds of applications for a long time but in defect prediction

research it is relatively unexplored. Song et al. [25]

constructed an attribute selection process by employing the

forward selection and backward elimination technique.

They found that the effect of applying feature selection

technique varies in respect of the learning algorithm and

data set. As a continuation of research, Wang et al. [26]

introduced ensemble feature selection techniques and

applied to a total of sixteen datasets. They found that

ensembles of only a few numbers of rankers perform well

which is better than ensembles of all the rankers.

Khoshgoftaar et al. worked on four scenarios based on

original and sample data to compare the prediction

performance in attribute selection and data sampling [12].

Gao et al. proposed a hybrid model for attribute selection

where feature ranking techniques are adopted for reducing

the search space [11]. Romi and Nanna combined genetic

algorithm and bagging technique for defect prediction [13].

One was used for attribute selection while the other

technique was used for data sampling. Moreover, they have

also shown the application of particle swarm optimization

to select important features for defect prediction. In [14],

the authors presented two feature ranking strategies such as

threshold-based techniques and signal-to-noise filter

technique for attribute selection.

Traditionally, some researchers used McCabe attributes

[57] to build defect prediction models, some others used

Halstead complexity measures [58], and lines of code

count. However, Menzies et. al. [10] mentioned that the

learning process for a software defect prediction model is

important than the subset of learning dataset.

Usually, quality and size of the training data plays an

important role for building any prediction model. Large

sample of training data is required for producing an

accurate prediction model. However, in software defect

prediction, we cannot get enough training data for a project

especially for a new project where historical dataset is not

sufficient, or in some cases are not available. In these

circumstances, the cross-project defect prediction model is

investigated and applied in recent times by most of the

researchers in defect prediction domain. Zimmerman et al.

studied the cross-project defect prediction as a large-scale

experiment on data vs. domain vs. process [34]. In that

work, the authors expressed the need to understand and

evaluate the process, code, and domain before building a

prediction model. They also described the necessary factors

to identify the project to build the defect predictor, but any

specific way of improving the defect prediction

performance has not been discussed. Turhan et al. studied

the relative values of cross-company defect prediction with

the company by answering three questions about the

usefulness of cross-company defect prediction, local tuning

of cross-company data, and generalization of cross-

company results [15]. Their approach increases the

probability of detection and the probability of false alarm in

terms of median. But the increment of false alarm rate

decreases the performance of the defect predictor. They

tried to reduce the false alarm rate using nearest neighbour

filtering. In cross-project defect prediction, the data

sampling and normalization is an important task to improve

the prediction performance. In [16], the authors presented

TCA+, an extension of TCA (Transfer Component

Analysis) by using source and target projects from Relink

[35] and AEEEM [36]. They showed an improved

performance relative with their previous work TCA

[37]using logistic regression. They normalized the train and

test dataset based on max-min and z-normalization and then

defining Dataset Characteristic Vector (DCV) for each

project they applied four decision rules to determine the

best dataset. Such other work has been conducted by some

other researchers [38], [39]. Considering the limited

research on cross-project defect prediction we have

introduced our attribute selection method to improve the

prediction accuracy in this regard.

2. Method

In this section, we describe our proposed attribute selection

process for software defect prediction. The selected

attributes will be used to predict the defects both for cross-

project and within project. For within project defect

prediction, a certain portion of the data will be used for

training the model and the remaining data will be used for

testing. On the other hand, there will be two different data

8 Md. Habibur Rahman, Sadia Sharmin, Md. Shariful Islam, Shah Mostafa Khaled and Sheikh Muhammad Sarwar

sets taken from two different projects that are used in cross-

project defect prediction, one for training and the other for

testing.

The overview of the proposed process to select the best set

of attributes for software defect prediction (given in

algorithm 1) contains the following sequential steps:

1) Generate and sort the pairwise combination of attributes

2) Select the candidate attributes set

3) Select the final attributes set

The defect prediction model begins by selecting a list of

pairwise combination of attributes from the dataset. Here,

we consider pairwise combination instead of considering all

possible combinations which is NP hard [23]. These pairs

of attributes are then used to generate the accuracy of the

defect prediction and corresponding accuracy will be stored

for further use. The pairwise attribute list is then sorted

based on the descending order of the accuracy. Then the

candidate attributes list is selected from the sorted list

which is used to find the final set of attributes for defect

prediction.

Algorithm 1 presents the overall process of the proposed

algorithm for defect prediction.

Algorithm 1 Attribute Selection Model

Input: OriginalSet of attributes A = { }

Output: Prediction results and best set of attributes =

{ }

1: Begin

2: Generate Pairwise combinations of attributes from

data set

3: Compute the accuracy of defect prediction for each

pair

4: Sort the set of pairwise combinations based on

accuracy metric

5: Determine the candidate attributes set based on

their occurrences in P

6: Find the final set of attributes for from

7: End

2.1 Generating and selecting pairwise combination of

attributes

As all the attributes of software defect dataset are not

equally important, we need to select a best set of attributes.

To accomplish that, first we generate a list of all possible

pair of combination from the given attributes. Let, we have

a set of attributes A = { }. Now,

according to the algorithm 2 we generate a pairwise

combination of those attributes. For example, the list will

contain pair of attributes like .

These pairs will then be used individually to generate

corresponding defect prediction accuracy (balance, a metric

describe in the Experimental Results and Analysis) list. To

do this, the dataset will be reconstructed by only the pair of

attributes and will be used to classify the defect data using a

classifier. This will return a list of accuracy for those pair of

attributes. The next task will be to sort the pairwise attribute

list based on the balance in a decreasing order. The final list

will not contain any balance less than , a threshold to filter

the balance list.

Our algorithm for the selection of pairwise combination is

presented in Algorithm 2

Algorithm 2 Generating and Selecting the Combinations of

Pairwise Attributes

 Original set of attributes = { }

Set of classes
Dataset : and Classifier

 = a threshold value for determining potential attribute

pairs

 Sorted list of paired attributes list P

1:

2: ← { }

3:

4:

6:

7:
8:
9:

10:

11: Sort in descending order based on balance using

B

12: Return P⊂ , where| |= k and

 ,

13:

2.2 Selecting the set of candidate attributes

In this phase, we rank all the attributes based on the

frequency of occurrences in the selected pairwise

combinations. The attributes which appear more have

higher importance. To generate the candidate attribute list,

we compute the number of occurrences of each attribute

from the pairwise sorted list which we got from Algorithm

2. Then the attributes are sorted in a descending order based

on the total occurrence of an attribute. At the top of the

candidate attribute list, we get those attributes which are

most responsible for better defect prediction accuracy. The

candidate attribute selection process is represented in

Algorithm 3, which returns the candidate attributes set

sorted based on their frequency.

Algorithm 3 Selecting the set of Candidate Attributes

Input:Sorted paired wise combination of attributes P:

 : Set of decreasing order sorted attributes with

frequency for each attribute

1:

2:

3: do

4:
5:
6:

An Attribute Selection Process for Cross-Project Software Defect Prediction 9

7:

8:

2.3 Selecting the final subset of attributes

In the candidate attribute list, we have a ranked list of

attributes according to their individual performance. Now to

determine a subset of attributes that combinedly perform

better for the defect prediction task we proposed to use

algorithm 4. Algorithm 4 represents the process of choosing

the best attributes for final attribute set where all pairwise

combination is evaluated and finally resulted in the subset

which achieves the highest balance. To select the best set of

attributes we get the candidate attribute list A
+
 from

algorithm 3. Let name the best set of attributes as F.

Primarily the top ranked attribute is added into F and

calculate balance using F which is stored for further

checking. Then the second ranked attribute from the

candidate attribute list is added into F and again calculate

the balance using F. Now the current balance is compared

with the previously stored balance. If the current balance is

better than the previous one, the previous balance is

replaced by the current one. If the current balance is lower

than the previous one, the last added attribute is discarded

from the best set of attribute F. Then the next top ranked

attribute is added into F and do the same until the last

attribute of the candidate attribute list. Thus, we follow a

greedy forward search algorithm to find the final subset of

features.

Algorithm 4 Selecting the final set of attributes

 : Set of descending order sorted attributes A
+

Set of classes
Dataset : and Classifier

 : Final set of attributes F for defect prediction with

their corresponding balance

1:

2: balance
3: | |

5: F ← F U { }

6

7:

8:
9:

10:
11:

12:

13:

2.4 Cross project defect prediction

From algorithm 4, we can identify the best set of attributes

for which the accuracy of the within project defect

prediction improves significantly. Now, we want to use

those best set of attributes for our cross-project defect

prediction. In cross project defect prediction, we need a

dataset (Dtrain) for training the defect prediction model and

another dataset (Dtest) for testing the model. To accomplish

this, the defect prediction model will be trained with the

Dtrain and Dtest will be used to evaluate the performance.

Note that, only the selected attributes (obtained from the

Dtrain) that match with the test set (Dtest) is used for

performance evaluation.

The algorithm for cross project defect prediction using the

best set of attributes is as follow:

Algorithm 5 Defect Prediction for Cross Project

 Dataset and and best set of attributes

 Dataset and with the best set of

attributes and f-score on

1:

2.
3

4.
5.

6.

7.

8.

9.

3. Results and Discussion

In this paper, an attribute selection technique is proposed

for better prediction of software defects. Most often the

researchers of defect prediction domain face problems to

find the appropriate datasets for their experiments as several

companies use private datasets to build their defect

prediction model. So, we cannot compare our result with

their prediction model to validate the accuracy. In these

circumstances, we had to use the public datasets which help

us to verify and validate the prediction model. NASA MDP

repository shared the public state-of-the-art data sets for

building and testing different prediction models. As a

consequence, we have collected the dataset from the

publicly available NASA MDP repository to validate the

attribute selection process for defect prediction, which was

also used by many noted researchers like [10], [40], [41],

[42]. We employed ReLink [35] dataset used by [16] for the

validation of cross-project defect prediction model.

Most frequently used NASA dataset overview has been

given in the Table 1. Table 2 gives us an overview of

datasets other than the NASA MDP repository. For

experimental evaluation, we have used five public data sets

obtained from NASA MDP Repository. The number of

samples for each data set varies from 200 to 1585. Two

different types of experiments are performed for generating

the results. In the first experiment, 3 datasets out of 7 are

utilized for finding the best attributes and a simple classifier

(e.g., Naïve Bayes classifier). Then, the remaining 4 data

sets are employed to test the performance based on these

selected attributes and the classifier. Repeating this process

for ten times, the average output is collected and presented

in table 8. Along with the averages, we also incorporate the

respective standard deviations [22]. For the second

experiment, 90 percent of data are chosen randomly from

10 Md. Habibur Rahman, Sadia Sharmin, Md. Shariful Islam, Shah Mostafa Khaled and Sheikh Muhammad Sarwar

each data set to identify the best set of attributes with a

classifier and the rest 10 percent data are used testing. This

process is also repeated ten times and the average results

along with their standard deviations are displayed in table 9.

In our experiment, the results are generated for different

datasets using two classifiers namely Naïve Bayes and

Bayesian Network (BN). To show the superiority of the

proposed attribute selection process we have chosen these

two classifiers, because most of the existing state-of the-arts

methods commonly used these classifiers for result

comparison. Several metrics namely balance, AUC, f-

measure, precision, recall is employed for experimental

results.

Table 3 presents the confusion matrix of a problem where

TP, FN, FP and TN denote True Positive, False Negative,

False Positive and True Negative respectively. To evaluate

the performance of defect prediction model, the authors in

[10] used two well-known metrics namely probability of

detection (pd) or recall and probability of false alarm (pf).

Formal definition for (pd) and (pf) are given in Equation (1)

and (2).

Table 1. Nasa Dataset Description

Data Set Type of Software # Instances #Attributes Defected (%)

CM1 NASA Space Craft Instrument 498 22 9.83%

JM1 Real-time predictive ground system 10885/7782 22 80.65%

PC1 Flight software for earth orbiting satellite 1109 22 93.05%

PC2 1585 37 1.01%

PC3 1125 38 12.44%

PC4 1399 38 12.72%

PC5 17001 39 2.96%

MW1 A zero-gravity experiment related to combustion 403 37 7.69%

KC1 Storage Management

2109 22 15.45%

KC2 522 22 20.49%

KC3 458 39 9%

KC4 125 39 49%

MC1 9466 39 0.7%

MC2 Video guidance system 161 39 32%

Table 2. Other Defect Prediction Data Set Description

Data Set Type of Software #Attributes #Instances Defected (%)

Eclipse 3.0 (Package) Eclipse Foundation

198 661 62.78%

Eclipse 2.0 198 6729 38.80%

Jedit jEdit Project 24 492 2.23%

Ant Apache Soft. Foundation

24 745 22.15%

Tomcat 22 885 8.98%

Poi 22 492 1.28%

Apache 27 194 50.51%

Velocity 24 229 51.66%

Synapse 24 256 33.59%

Lucene 20 340 59.71%

Xalan 20 886 46.44%

Ivy 24 352 11.36

ar1 Turkish White-goods manufacturer

30 121 7.43%

ar3 30 63 12.70%

ar4 30 107 18.70%

ar5 30 36 22.23%

ar6 30 101 14.85%

JDT.Core Eclipse

198 939 53.46%

SWT 198 843 24.67%

ZXing Android Project

27 399 29.57%

Safe 27 56 39.29%

Table 3. Confusion Matrix

 Real Defect

Predicted Defect Yes No

Yes TP FP

No FN TN

An Attribute Selection Process for Cross-Project Software Defect Prediction 11

)

Several metrics namely balance, f-score, precision, recall is

employed for experimental evaluation. These metrics are

calculated using the following the equations. (Equation 3, 4

and 5)

 √

 … … (4)

f

… …(5)

Another evaluation is the AUC (for "Area under the ROC

Curve.") that measures the entire two-dimensional area

underneath the entire ROC curve. Receiver Operating

Characteristic (ROC) curve provides a graphical

visualization of the classification results [59].

It is observed from Table 4 that when we select common

attributes for the combination of all different data sets the

performances are not satisfactory. On the other hand,

dataset (software) specific attribute selection provides

better results (Table 9) even with a simple classifier. To

demonstrate the effectiveness our proposed method, we

have provided a comparison of our results with the

existing state-of-the-art methods on the same data sets.

For this comparison, we take balance values (using BN)

from Table 5. Apart from balance, other two metrics AUC

and F-score results are also provided in Table 6. It is

observed from Table 6 that in most of the cases, our

proposed algorithm performs better than other methods.

This is because, our algorithm can choose the important

attributes (e.g., McCabe Cyclomatic Complexity, Design

Complexity) that provide significant information about the

defect modules in a software. However, in some datasets,

balance is slightly lower than the compared methods as

they have generated their results with improved

classifiers. However, we focus on showing the

performance of attribute selection process with a simple

classifier. The use of advanced classifiers might improve

the overall performance of the model.

Table 4. Classification Result using common attributes

Dataset NB (%) BN (%)
 Probability of

Detection

Probability of False

Alarm

balance Probability of

Detection

Probability of False

Alarm

balance

CM1 32 8 51.58±1.12 39 20 54.60±1.02
PC3 47 15 61.05±1.51 61 24 67.61±1.32

PC4 35 5 53.90±1.72 73 20 76.24±1.25
KC3 30 10 50±2.01 32 8 51.58±1.36
MW1 62 13 71.60±1.22 50 10 63.94±2.12
Avg: 42 9.42 58.31 53.14 15 64.72

Table 5. Classification Result using Data Specific attributes

Dataset NB (%) BN (%)

 Probability of

Detection

Probability of False

Alarm

balance Probability of

Detection

Probability of

False Alarm

balance

CM1 37 9 55.00±1.12 72 33 69.39±1.02

PC3 76 33 71.14±1.32 70 27 71.46±1.32

PC4 80 30 74.50±1.53 86 20 82.73±1.12

KC3 46 15 60.37±1.22 44 6 60.17±1.35

MW1 63 14 72.02±2.01 61 14 70.69±2.02

Avg: 57.28 16.71 65.81 68.85 20 72.45

Table 6. Within Project Result Comparison Among Different Methods

 Balance

Dataset Jing et al. [33] Yao et al. [43] Song et al. [44] Proposed Method

CM1 0.68 0.66 0.70 0.71

JM1 0.67 0.68 0.59 0.63

PC1 0.77 0.69 0.67 0.77

PC2 - - 0.80 0.87

PC3 0.74 0.75 0.71 0.76

PC4 0.79 0.85 0.82 0.81

PC5 0.88 - 0.90 0.92

KC1 0.71 0.72 0.71 0.71

KC2 - 0.75 - 0.78

KC3 0.68 0.69 0.71 0.82

KC4 - - 0.69 0.78

MC1 - - 0.79 0.82

MC2 0.76 0.62 0.61 0.71

12 Md. Habibur Rahman, Sadia Sharmin, Md. Shariful Islam, Shah Mostafa Khaled and Sheikh Muhammad Sarwar

MW1 0.80 0.64 0.66 0.75

AR1 - - 0.41

AR3 - - 0.66

AR4 - - 0.68 0.73

AR6 - - 0.49

 AUC

Dataset Issamet al.

[45]

Yao et al.

[43]

Ahmet et al.

[46]

Proposed Method (fold)

CM1 - 0.79 - 0.81 (20)

KC1 - 0.80 - 0.83 (20)

KC2 0.82 0.87 (20)

KC3 0.86 0.83 - 0.76

PC1 - - - 0.90 (20)

JM1 - 0.75 - 0.75 (20)

MC1 0.98 - - 0.96 (20)

MC2 - 0.75 - 0.79 (20)

MW1 - 0.78 - 0.80 (20)

PC1 0.87 0.88 (20)

PC2 0.95 - - 0.94

PC3 - 0.85 - 0.83

PC4 0.96 0.94 - 0.98

Ant-1.7 0.86 - 0.82 0.83

Camel-1.6 0.80 - - 0.72

Synapse - - 0.66 0.79

Lucene - - 0.63 0.72

Xalan - - 0.62 0.82

Ivy - - 0.85 0.83

Tomcat - - 0.77 0.84

Poi - - 0.85 0.89

Jedit - - 0.66 0.63

Velocity - - 0.68 0.77

F-score

Dataset Renet. al.[47] Our Method

ar3 0.569 0.600

Ar4 0.474 0.501

Ar5 0.625 0.653

cm1 0.254 0.347

kc1 0.462 0.441

kc2 0.534 0.593

kc3 0.412 0.400

mw1 0.371 0.461

pc1 0.398 0.414

Now the selected attributes are applied for our cross-project

defect prediction. In cross-project defect prediction, train

and test data set are used from different projects. So, we

have taken only those selected attributes and their instances

to generate the new dataset. This process is done for both

the training and the test data set. It should be kept in mind

that the selection process will be run on the training data

set. We have evaluated our cross-project defect prediction

using the data sets found in ReLink [35] and used for

transfer learning [16].

In case of cross project defect prediction, we measured the

result by calculating the f-measure which is used in [16] to

compare the result with TCA (Transfer Component

Analysis). The three data set found in ReLink [35] are

Apache, Zxing and Safe and every data set contains the

same number and type of attributes. So, we take the

experiment for Safe Apache, Apache Safe, Zxing

Apache, Apache Zxing, Zxing Safe, and Safe

Zxing where the first portion of is for training and the

second portion is for testing the defect predictor. The result

is compared in Table 7 with some other performance

measurement scale such as balance, precision, recall and

AUC. As shown in the table result improves in four cases

comparing with TCA+. For example, f-measure for Zxing

 Safe in our approach (0.70) is better than TCA+ (0.64).

We have experimented the result with BN classifier where

the TCA+ authors used logistic regression for their

experiment. We observed that BN gives a better result in

our attribute selection approach.

An Attribute Selection Process for Cross-Project Software Defect Prediction 13

Table 7. Cross Project Result Comparison Among Different Methods

Source Target
Nam et al. [16]

f-score

Our Method

f-score precision recall balance AUC

Safe Apache 0.64 0.71 0.71 0.71 0.71 0.75

ApacheSafe 0.72 0.74 0.83 0.77 0.58 0.74

ZinxgApache 0.72 0.61 0.72 0.64 0.53 0.64

ApacheZxing 0.49 0.60 0.61 0.70 0.32 0.50

ZxingSafe 0.64 0.70 0.74 0.70 0.70 0.73

SafeZxing 0.43 0.63 0.63 0.69 0.38 0.64

Avg. 0.61 0.66 0.71 0.70 0.54 0.67

The bold-faced results are better than the compared defect

prediction technique and underlined results are for the

average accuracy representation. The attribute selection

process has been performed by our implementation and

after preparing the data set for the testing is performed

using Weka [48]. Based on the result from Table 7 we can

say that the attribute selection process improves the cross-

project defect prediction result. Our proposed algorithm

performs better as it selects the important attributes both for

within project and cross-project software defect prediction.

This is because, we first provide a ranking of the attributes

based on their pairwise performance and then select the best

set from this ranking.

4. Conclusion

Transferring defect knowledge from one project to another

is a very complex task for software defect prediction. But if

a proper approach can be used then this complex task can

be improved for a better defect prediction accuracy. In this

paper, we presented an attribute selection process for

predicting the software defects in both within project and

cross-project domain. Our result indicated that in both

domain our approach may produce significantly better

result for a specific classifier. However, incorporation of an

improved classifier along with our attribute selection

method may enhance the overall performance. We will

address this issue in our future work. Moreover, there are

other meta-heuristic approaches that can also be adopted

here for selecting best set of attributes. we will also address

this issue in future.

References

1. Rawat, S. Mrinal and K. D. Sanjay, “Software defect

prediction models for quality improvement: A literature

study,” International Journal of Computer Science Issues

(IJCSI), vol. 9, no. 5, 2012.

2. K. Gao, T. Khoshgoftaar and H. Wang, “An empirical

investigation of filter attribute selection techniques for

software quality classification,” in IEEE International

Conference in Information Resue & Integration, 2009.

3. H. Wang, T. Khoshgoftaar and V. Hulse, “A Comparative

Study on threshold-based feature selection techniques,” in

IEEE International Conference on Granular Computing,

2010.

4. T. Wang, L. Weihua, S. Hoabin and L. Zun, “Software

Defect Prediction Based on Classification Ensemble,”

Journal of Information & Computational Science, vol. 8, no.

16, pp. 4241-4254, 2011.

5. S. Kim, H. Zhang, R. Wu and L. Gong, “Dealing with Noise

in Defect Prediction,” in International conference on

Software Engieering (ICSE), 2011.

6. D. Gray, D. Bowes, N. Davey, Y. Sun and B. Christianson,

“Reflections on the Nasa MDP Data Sets,” Software, IET,

vol. 6, no. 9, pp. 549-558, 2012.

7. G. Genaro, “Estimating software fault-proneness for tuning

testing activities,” in 22nd International Conference on

Software Engineering (ICSE), 2000.

8. T. Khoshgoftaar and K. Gao, “Feature Selection with

Imbalanced Data for Software Defect prediction,” in

International Conference on machine Learning and

Applications, 2009.

9. B.-J. Park, S.-K. Oh and W. Pedrycz, “The Design of

Polynomial Function-Based Neural Network Predictors for

Detection of Software Defects,” Journal of Information

Science, vol. 229, pp. 40-57, 2013.

10. T. Menzies and A. Frank, “Data Mining Static Code

Attributes to Learn Defect Predictors,” IEEE Transaction on

Software Engineering, vol. 33, no. 1, pp. 2-13, 2007.

11. K. Gao, T. M. Khoshgoftaar, H. Wang and N. Seliya,

“Choosing Software metrics for defect prediction: an

investigation on feature selection techniques,” in

International Conference on Tools with Artificial Intelligence

(ICTAI) , Arras, 2011.

12. T. Khoshgoftaar, K. Gao and N. Seliya, “Attribute Selection

and Imbalanced Data: Problems in Software Defect

Prediction,” in Tools with Artificial Intelligence (ICTAI),

2010 22nd IEEE International Conference on, Arras, 2010.

13. R. S. Wahono, S. Nanna and S. Ahmad, “Metaheuristic

Optimization based Feature Selection for Software Defect

Prediction,” Journal of Software, vol. 9, no. 5, pp. 1324-

1333, 2014.

14. H. Wang, T. M. Khoshgoftaar and A. Napolitano, “A

Comparative Study of Ensemble Feature Selection

Techniques for Software Defect Prediction,” in ICMLA '10

Proceedings of the 2010 Ninth International Conference on

Machine Learning and Applications, Washington, DC, USA,

2010.

15. T. Burak, T. Menzies, A. B. Bener and J. D. Stefano, “On the

relative value of cross-company and within-company data for

defect prediction,” Empirical Software Engineering, vol. 14,

no. 5, pp. 540-578, 2009.

16. J. Nam, S. J. Pan and A. Kim, “Transfer Defect Learning,” in

International Conference on Software Engineering (ICSE),

Piscataway, NJ, USA, 2013.

14 Md. Habibur Rahman, Sadia Sharmin, Md. Shariful Islam, Shah Mostafa Khaled and Sheikh Muhammad Sarwar

17. D. Rodr´ıguez, R. Ruiz, J. Cuadrado-Gallego and J. Aguilar-

Ruiz, “Detecting fault modules applying feature selection to

classifiers,” in IEEE International Conference on Information

Reuse and Integration, 2007.

18. K. Jong, E. Marchiori, M. Sebag and A. V. D. Vaart,

“Feature selection in proteomic pattern data with support

vector machines,” in IEEE Symposium on Computational

Intelligence in Bioinformatics and Computational Biology,

2004.

19. G. Ilczuk, R. Mlynarski, W. Kargul and A. Wakulicz-Deja,

“New Feature Selection Methods for Qualification of the

Patients for Cardiac Pacemaker Implementation,” in IEEE

International Conference on Computers in Cardiology, 2007.

20. G. Forman, “An extensive empirical study of feature

selection metrics for text classification,” The Journal of

Machine Learning Research, vol. 3, pp. 1289-1305, 2003.

21. Z. Chen, T. Menzies, D. Port and B. Boehm, “Finding the

right data for software cost modeling,” Journal of Software,

vol. 22, no. 6, pp. 38-46, 2005.

22. S. Sharmin, M. Shoyaib, A. Ahsan Ali, M. A. Hossain Khan

and O. Chae, “Simultaneous feature selection and

discretization based on mutual information,” Pattern

Recognition, vol. 91, pp. 162-174, 2019.

23. S. Sharmin, A. Ahsan Ali, H. Khan, M. Asif and M. Shoyaib,

“Feature selection and discretization based on mutual

information,” in IEEE International Conference on Imaging,

Vision & Pattern Recognition (icIVPR), 2017 .

24. S. Sharmin, M. R. Arefin, M. A.-A. Wadud, N. Nower and

M. Shoyaib, “SAL: An effective method for software defect

prediction,” in 18th International Conference on Computer

and Information Technology (ICCIT), 2015.

25. Q. Song, Z. Jia, M. Shepperd, S. Ying and J. Liu, “A general

Software defect-proneness prediction framework,” IEEE

Transaction on Software Engineering, vol. 37, no. 3, pp. 356-

370, 2011.

26. H. Wang, T. M. Khoshgoftaar and A. Napolitano, “Software

mesuret data reduction using ensemble techniques,”

Neurocomputing, vol. 92, pp. 124-132, 2012.

27. L. Stefan, “Benchmarking Classification Models for Software

Defect Prediction: A Proposed Framwork and Novel

Findings,” IEEE Transaction on Software Engineering, vol.

34, no. 4, pp. 485-496, 2008.

28. S. A. Romi and S. Nanna, “Combining Particle Swarm

Optimization based Feature Selection and Bagging

Technique for Software Defect Prediction,” International

Journal of Software Engineering and Its Application, vol. 7,

no. 5, pp. 153-166, 2013.

29. H. Wang, T. M. Khoshgoftaar and N. Seliya, “How Many

Software Metrics Should be Selected for Defect Prediction?,”

in Proceedings of the Twenty-Fourth International Florida

Artificial Intelligence Research Society Conference, 2011.

30. A. Okutan and O. T. Yildiz, “Software defect prediction

using Bayesian networks,” Empirical Software Engineering,

vol. 19, no. 1, pp. 154-181, 2014.

31. T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang and A.

Bener, “Defect prediction from static code features:,”

Automated Software Engineering, vol. 17, no. 4, pp. 375-

407, 2010.

32. M. Li, H. Zhang, R. Wu and Z.-H. Zhou, “Sample-based

software defect prediction with active and semi-supervised

learning,” Automated Software Engineering, vol. 19, no. 2,

pp. 201-230, 2012.

33. X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu and J. Liu,

“Dictionary Learning Based Software Defect Prediction,” in

International Conference on Software Engineering (ICSE),

Hyderabad, India, 2014.

34. T. N. G. M. Zimmerman, “Cross-Project Defect Prediction,”

in Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, New

York, NY, USA, 2009.

35. R. Wu, H. Zhang, S. Kim and S.-C. Cheung, “ReLink:

Recovering Links between Bugs and Changes,” in

Foundations of software engineering, New York, NY, USA,

2011.

36. M. D’Ambros, M. Lanza and R. Robbes, “An extensive

comparison of bug prediction approaches,” in IEEE Working

conference on Mining Software Repositories (MSR), Cape

Town, 2010.

37. S. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang, “Domain

Adaptation via Transfer Component Analysis,” IEEE

Transactions on Neural Networks, vol. 22, no. 2, pp. 199-

210, 2010.

38. F. Rahman, D. Posnett and P. Devanbu, “Recalling the

"imprecision" of cross-project defect prediction,” in 20th

International Symposium on the Foundations of Software

Engineering, New York, NY, USA, 2012.

39. F. Peters, T. Menzis and A. Marcus, “Better Cross Company

Defect Prediction,” in 10th IEEE Working Conference on

Mining Software Repositories (MSR), San Francisco, CA,

2013.

40. S. Lessmann, B. Baesens, C. Mues and S. Pietsch,

“Benchmarking classification models for software defect

prediction: A proposed frame-work and novel findings,”

IEEE Transaction on Software Engineering, vol. 34, no. 4,

pp. 485-496, 2008.

41. Y. Jiang, B. Cukic and T. Menzies, “Fault prediction using

early lifecycle data,” in 18th IEEE Symposium on Software

Reliability, 2007.

42. H. Zhang, X. Zhang and G. Ming, “Predicting defective

software components from code complexity measures,” in

13th Pacific Rim International Symposium on Dependable

Computing, 2007.

43. S. W. a. X. Yao, “Using Class Imbalance Learning for

Software Defect Prediction,” IEEE Transaction on

Reliability, vol. 62, no. 2, pp. 434-443, 2013.

44. Q. Song, J. Zihan, M. Shepperd, S. Ying and J. Liu, “A

General Software Defect-Proneness Prediction Framework,”

IEEE Transaction on Software Engineering, vol. 37, no. 3,

pp. 356-370, 2011.

45. H. L. Issam, A. Mohammad and G. Lahouari, “Software

defect prediction using ensemble learning on selected

An Attribute Selection Process for Cross-Project Software Defect Prediction 15

features,” Journal of Information and Software Technology,

vol. 58, pp. 388-402, 2015.

46. O. Ahmet and O. Y. Taner, “Software defect prediction using

bayesian network,” Empirical Software Engineering, vol. 19,

no. 1, pp. 154-181, 2014.

47. Ren, Jinsheng, et al. "On software defect prediction using

machine learning." Journal of Applied Mathematics 2014

(2014).

48. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann

and I. H. Witten, “The WEKA Data Mining Software: An

Update,” SIGKDD Explorations, vol. Volume 11, no. 1, 2009.

49. IET Digital Library, “Author Guide - IET Research

Journals,” [Online]. Available: http://digital-library.

theiet.org/journals/author-guide. [Accessed 27 November 2014].

50. N. S. S. A. RS Wahono, “Metahuristic Optimization based

Feature Selection for Software Defect Prediction,” Journal of

Software, pp. 1324-1333, 2014.

51. S. Y. S.-W. Z. S.-S. W. J. L. Xiao-Yuan Jing, “Dictionary

Learning Based Software Defect Prediction”.

52. J. Nam, Jaechang, S. J. Pan, and S. Kim, "Transfer defect

learning", in 35th International Conference on Software

Engineering (ICSE). IEEE, 2013.

53. G. A. D. Canfora, D. p. Massimiliano, R. Oliveto, A.

Panichella and S. Panichella, “Multi-Objective Cross-Project

Defect Prediction,” in IEEE Sixth International Coference on

Software Testing, Verification and Validation, Luembourg,

2013.

54. Z. He, F. Shu, Y. Yang, M. Li and Q. Wang, “An

Investigation on the Feasibility of Cross-Project Defect

Prediction,” Automated Software Engieering, vol. 19, no. 2,

pp. 167-199, 2012.

55. A. Bener and B. Turhan, “Software defect prediction:

Heuristics for weighted naive bayes,” in ICSOFT (SE), 2007.

56. G. Czibula, Z. Marian and I. G. Czibula, “Software defect

prediction using relational association rule mining,” Journal

of Information Sciences.

57. T. J. McCabe, "A complexity measure," IEEE Trans.

Software Eng., vol. SE-2, pp. 308-320, Dec. 1976.

58. M. Halsted, Elements of Software Science (Operating and

Programming Systems Series). New York, NY, USA: Elsevier,

1977. [Online]. Available:

https://dl.acm.org/doi/book/10.5555/540137

59. T. Fawcett, “An introduction to roc analysis,” Pattern

Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006.

	11. Md. Habibur Rahman _____17.11.21

