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ABSTRACT

of the collection, Nurse Care Activity Recognition Dataset. Our investigation suggests that HexaGAN learns the original 

is lower. To investigate the role of activation function, we replace the underlying ReLU activation functions of the neural 

version of HexaGAN possesses the potential to outperform the original one when applied to the same activity recognition 
datasets.
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1. Introduction

While meticulous approaches are used during the collection 
of real-world data, gathering real-world data without any 
missing values remains a challenging task. Diligently 
collecting data does not guarantee the absence of missing 
values within data [1]. The missing values within data may or 
may not exhibit distinctive patterns. These patterns can be used 
to map relations between the observable and non-observable 
variables. According to [2], based on the exhibition of patterns 
or simply, the distribution of missing values, missing data 

at Random (MCAR), Missing at Random (MAR), Missing 
Not At Random (MNAR). For MCAR data, the missing 
values do not show any particular behavior or pattern. No 
conclusion can be drawn or variable-to-variable mapping can 
be extracted in such circumstances. When data is missing 
at random, the observable variables resemble some pattern. 
When data is MNAR, both observable and non-observable 
variables bear particular characteristics. Regardless of the 
category of missing data, its presence makes a considerably 
huge volume of data to become unusable for machine 
learning-oriented studies and degrades the performance of 
machine-learning models. Imputation techniques are needed 
to prevent vast portions of data from becoming unusable for 
machine-learning-oriented tasks.

While imputation techniques using Generative Adversarial 
Networks (GANs) [3] have been recently gaining attention [4, 
5, 6], conventional approaches are still widely recognized as 
the state-of-the-art [7, 8, 9, 10]. Conventional or adversarial, 
whichever category the imputation techniques fall under, 
face a major challenge when the amount of available 
complete data is considerably low. Conversely saying, when 
the missing rate of data is as high as 80%-90%, imputation 
performance begins to degrade. The purpose of this study 

imputation models can contribute to better imputation 

change of activation functions on HexaGAN, an imputation 
model based on Generative Adversarial Networks. For the 
imputation task, two activity recognition datasets from the 
CARE- COM Nurse Care Dataset [26] collection is selected. 
The activity recognition task itself is deemed challenging 
because it requires actions performed by an agent (nurse) 
on another agent (patient) to be characterized based on the 

Recognition (HAR) dataset is extracted from a subset of KU-
HAR [30] which originally contains data belonging to 18 
categories of simple human activities like standing, sitting, 
running, walking, and lying.

Our contribution can be stated as follows:

imputation performance.

Comparison among four existing approaches with the 
newly proposed approach.

of missing data.

List of possible impacts of activation functions (ReLU 
versus Swish) on imputation tasks.

Building an imputation model for a challenging activity 
recognition dataset in the MCAR missing data scenario.

models, we performed imputation on two nurse care activity 
recognition datasets and one simple human activity datasets, 

assess the deviation between the original data and the 
imputed values. We also prepared a test dataset containing 
complete and imputed data and calculated the accuracy 

Decision Tree, and Random Forest) to investigate if the 
imputed data aligns with the correct target class. Motivated 



2

by the performance of HexaGAN [4], our experiment was 
extended to modifying the architecture of HexaGAN by 
substituting the ReLU activation function within the neural 
network architecture of HexaGAN, with the Swish activation 
function and computing the root mean square error (RMSE) 

original, 6 out of 10 times.

The remainder of this paper is organized as follows: Section 
2 provides related work, followed by the Methodology in 
Section 3 and Experiment Setup in Section 4. Results are 
discussed in Section 5. Lastly, Section 6 drops a concluding 
note and future direction.

Before Generative Adversarial Networks (GANs) 
demonstrated game-changing performance in imputation 
tasks, conventional approaches competed with each other 
to be crowned state-of-the art of missing data imputation 
tasks. K-Nearest Neighbors [7], Matrix Completion [8], 
Multivariate Imputation by Chained Equations (MICE) [9], 
Denoising Autoencoders [10] fall in the second category.

, commonly known as KNN, is 

computed and compared with the nearest k neighbors. 
KNN was implemented as an imputation technique for 
DNA microarrays in [7]. Experimental results in [7] have 
shown KNN to be robust to the percentage of missing data 
with a deviation of 6-26% from real values and was thus 
recommended as a standard approach.

takes a multi-step approach. [9] shows the 
demonstration of version 2.9 of MICE on a simple dataset 

dataset are made and in each copy, the missing values are 
imputed temporarily based on the available remaining data. 
The mean for each of the independent variables in the dataset 
are computed and used for temporarily imputing for each 
of the corresponding independent variables. Next, taking 
other independent variables as features, values for another 
independent variable are predicted. This process is repeated 
until the dataset has statistical estimates (predictions) for all 
independent variables. To put it simply, MICE focuses on 
imputing one variable at a time using features of the other 
variables present in the data.

GAN
vanilla GAN architecture. The most basic GAN architecture 
constitutes a Generator Network and a Discriminator 
Network. The generator model outputs fake samples from 
random noise to replicate the original data distribution. 
The Discriminator Model attempts to aid the generator by 
monitoring the samples produced by the generator. The 
Discriminator does this by identifying the fake samples from 
the real ones and dispatching feedback to the generator in 

the form of a loss function value. Using this loss value, a 
generator improves its performance. Some noteworthy 
variations of GANs include WGAN [12], StyleGAN [13], 
CycleGAN [14], LSGAN [15] and CGAN [16]. Initially 
intended to generate images, the applications of GANs have 
extended to interesting use- cases such as face-manipulation, 
image-to-image translation, text-to-image translation, video 
prediction [17] and missing data imputation.

GAIN 
Network-oriented approach to the missing data problem. 
Following GAIN, other GAN-oriented solutions have been 
proposed from time to time, for example, MISGAN [5] 
and HexaGAN [4]. The target of the generator in GAIN is 
to generate a vector of imputed values taking the real data 
vector with missing values, corresponding mask (indicator 
of missing values), and noise as input to the generator. The 
discriminator is given the task to identify which components 
are real and which components are imputed. The GAIN 

world datasets from the UCI machine learning repository 
(Breast, Spam, Letter, Credit, and News) [18] by predicting 
the mask vector.

HexaGAN [4] framework, overall, addresses three real-
world problems simultaneously: missing data, class 
imbalance, and missing labels. Of the six components, three 
are involved in the missing data problem: the encoder and 
one set of generator-discriminator. In addition to MNIST 
handwritten dataset, HexaGAN was used to impute data 
from the UCI machine learning repository similar to GAIN 
[6]. The working mechanism of HexaGAN would be futher 
discussed in the following section.

GAIN-GTEx is another follow-up of GAIN with some 
additional leverages for gene expression imputation [19]. 
Stackelberg GAN takes note of mode collapse and drop- 
ping issues of GAN by using multiple generators instead 
of the standard single generator [20]. High missing rates 
of data are considered in GAMIN [21] which also presents 

handles the complicated nature of images by converting 
the image imputation problem to a multi-domain image-
to-image translation task. This enables the missing data to 
be successfully estimated using the remaining clean data 
set. An approach to impute temporal information or multi- 
stage information is given by end-to-end generative model 
E2

Unit [24] with GAN for multivariate time series imputation. 
SciGAN [25] framework has been proposed for scRNA 
sequence imputations by alleviating the previous problems 
of oversmoothening and removal of cell-to-cell stochasticity. 
Other works on imputation based on GAN include [26] and 
[27]. For a comprehensive study on the use of GANs for 
missing data imputation, the reader can refer to [28].
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In our work, we take the initiative to draw a comparison 
between four existing imputation techniques, namely, KNN, 
MICE, GAIN, and HexaGAN primarily and then, being 
motivated by the performance of HexaGAN, we modify 
the architecture of the underlying neural network that might 
result in a boost to the imputation performance. HexaGAN 
[4] is based on Generative Adversarial Networks (GANs). 
GANs are deep learning-based techniques that learn the 
underlying data distribution and thus can be used in data 
imputation tasks. For the purpose of imputation, we borrow 
three elements from HexaGAN, which are: the Encoder, the 
Generator, and the Discriminator, all of which are neural 
networks.

Fig. 1. Overview of models working together

Activation functions in the underlying layers of HexaGAN 

Encoder Generator Discriminator

HexaGAN Hidden=ReLU
Output=ReLU

Hidden=ReLU
Output=Sigmoid

Hidden=ReLU
Output=None

Hexa-
GAN-Swish

Hidden=Swish
Output=Swish

Hidden=Swish
Output=Sigmoid

Hidden=Swish
Output=none

Activation functions equip neural networks with the ability 
to handle non-linear data. It determines which neuron will 

forward propagation. ReLU, Sigmoid function, and Tanh 
functions are the most widely used activation functions, 
especially ReLU. ReLU is more like the de-facto standard. 
In 2017, Google Brain has brought a new activation function 
into the arena- the Swish Activation Function [29]. Swish is 

values. In the case of ReLU, all negative values are zeroed. 
Meanwhile, Swish zeroes values that are extremely negative. 
To put it simply, Swish accommodates a more few negative 
input values as non-zero, in comparison to ReLU. There is a 
possibility that these small negative values carry information 

approach.

functions of neural network layers from the original neural 
network architecture of HexaGAN using bold fonts.

Training Process: Suppose X is a complete data vector, m is 
a mask vector indicating the position of missing elements 
and  is a noise vector. The dimensions of all the vectors are 
equal. By element-wise multiplication of X and m, an 
incomplete data vector i.e. data vector with missing values is 
obtained. The encoder takes X, m and  as input and 
computes x . Equation 1 shows the computation of x similar 
to [4].

 1    (1)

The encoder E uses  x  as shown in Figure 1 in generating a 

hidden variable h. The generator takes X, x ,m and h as 

input to give imputed data vector . Equation 2 shows the 

computation of  similar to [4]. Now the discriminator tries 

to distinguish between imputed data vector  and complete 

data vector X. Training continues until training loss is 
converged.

  (2)

Algorithm 1: Missing Data Imputation

Input x  - data with missing values

m - vector indicating missing elements

- noise vector sampled from U(0,1)

Output - imputed data

     repeat

Sample a batch of pairs ( )

1

E( x , m)

 x G (h)

x x +(1-m) 

x +(1-m) x

Update Discriminator D using Stochastic 
Gradient Descent (SGD)

Update Encoder E and Generator G using SGD

1  reconE G

1

     until   Training loss is converged

Algorithm 1 (originally proposed in [b4]) describes missing 
data imputation and the corresponding model training. The 
two lines of pseudocode shown within the box indicate the 
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point where we tweak the network in order to investigate 

4. Experiment Setup: Dataset Description and Pre-
processing

Nurse Care Activity Recognition Dataset: The collection 
consists of 3 datasets. The datasets are records on six 
nursing care activities which is available at (https://ieee-
dataport.org/competitions/nurse-care- activity-recognition-
challenge). Information of these six activities along with 
their corresponding labels and frequencies are given in 
Tables 2 and 3. Three sensor de- vices were used to record 
these activities: motion capture sensor, meditag sensor, and 
accelerometer sensor. The data collected by three sensors are 

we experimented with the data collected by the accelerometer 
sensor and the meditag sensor.

Accelerometer Dataset: The accelerometer sensor which 
was positioned in the right chest pocket of the nurse collects 
the x, y, and z coordinates of the respective point. Details of 
the dataset are noted down in Table 2.

Classes of data with corresponding frequencies for 
Nurse Care-Accelerometer Dataset

Activity Description Activity

Vital Signs Measurement 2 7382

Blood Collection 3 9839

Blood Glucose Measurement 4 6142

Drip Retention & Connection 6 3744

Oral Care 9 5410

Diaper Exchange & Cleaning 12 7466

Total= - 39983

Meditag Dataset : The meditag sensor notes down the two 
dimensional positions, x and y of a bluetooth device which 
the nurse carries in his/her chest pocket and the air pressure 
in mHg. Details of the dataset are noted down in Table 3.

Classes of data with corresponding frequencies for 
Nurse Care-Meditag Dataset

Activity Description Activity

Vital Signs Measurement 2 2393

Blood Collection 3 2843

Blood Glucose Measurement 4 2009

Drip Retention & Connection 6 1571

Oral Care 9 1619

Diaper Exchange & Cleaning 12 4717

Total= - 15152

Classes of data with corresponding frequencies for 
KU-HAR Dataset

Activity Description Activity

Stand 0 10000

Sit 1 10000

Lay 5 10000

Walk 11 10000

Run 14 10000

Total= - 50000

KU-HAR Dataset: This Human Activity Recognition (HAR) 

smartphone sensors (Accelerometer and Gyroscope). For the 
experiment, out of 18 classes we used 10,000 data from each of 
the 5 classes, namely, stand, sit, lay, walk, and run. A total of 8 
features are used to describe an activity. These are- durations of 
time for recording data by the Accelerometer and Gyroscope, 
acceleration along X, Y, Z axes and rate of rotation around the 
X, Y, Z axes. The dataset is available at (https://data.mendeley.
com/datasets/45f952y38r/3).

Pre-processing and Settings:
of missing values, 20%, 50%, and 80% were used in our 
experiments. The 5 models were trained separately with each 

was assessed.

5. Results and Discussion

To investigate the performance of four missing data imputation 
techniques, i.e., KNN, MICE, GAIN, and HexaGAN, they 
have been applied on three datasets described in the previous 
section with varying missing rates. The performance 
evaluation is primarily carried out by measuring the root 
mean square error (RMSE) between the actual data values and 
the imputed values. Experimental results show a reduction 
in RMSE scores for GAN-based approaches such as GAIN, 
HexaGAN, and HexaGAN-Swish; indicative of the imputed 
values being closer to the actual data values. Next, 5-fold 
cross-evaluation is conducted by computing the accuracy 

forest) on test data containing both real data and imputed 

data, which has been imputed by GANs gives higher scores 
implying GANs implicitly learn the properties of original 
data better. The knowledge of these properties, in turn, helps 
to align data to its corresponding class.

Root Mean Square Error: Root Mean Square Error 
(RMSE) is used to investigate the imputation performance 

and the imputed data. 5-fold cross-validation is carried out 

that RMSE values consistently show a decreasing trend for 
GAN-based approaches across missing rates of 20%, 50% 
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and 80%. Lower RMSE values suggest that HexaGAN 
learns the real data distribution better by at least 46.72% 
even when the percentage of missing values in the dataset 
can go as high as 80% (Table 5). The possible reason is the 

underlying encoder. Encoders enable the overall architecture 
to learn the data representations better.

KNN GAIN HexaGAN HexaGAN-Swish

Mean Test 
RMSE

20% 1.142 0.1784 0.1452 0.0337 0.0355

50% 1.8893 2.0419 0.1741 0.0761 0.0701

80% 2.5598 2.7479 0.1971 0.1050 0.0981

Mean Test 
Accuracy by 
KNN

20% 0.1833 0.1802 0.2935 0.2754 0.269

50% 0.1852 0.183 0.2624 0.2602 0.2602

80% 0.1846 0.1889 0.2478 0.1803 0.1557

Mean Test 
Accuracy by 
Decision Tree

20% 0.1761 0.1741 0.4948 0.3363 0.3307

50% 0.1771 0.1785 0.4178 0.2511 0.2497

80% 0.1847 0.1717 0.382 0.2393 0.2262

Mean Test 
Accuracy by 
Random Forest

20% 0.1796 0.1787 0.4948 0.3363 0.3432

50% 0.1843 0.1863 0.4332 0.2582 0.2572

80% 0.1995 0.1943 0.3985 0.218 0.1672

KNN GAIN HexaGAN Hexa-
GAN-Swish

Mean Test RMSE 20% 0.6248 0.6685 0.3172 0.0853 0.0837

50% 1.0244 1.1307 0.2787 0.1530 0.1563

Mean Test Accuracy by KNN 20% 0.3337 0.337 0.6649 0.4325 0.501

50% 0.3382 0.3365 0.5618 0.3386 0.5279

Mean Test Accuracy by Decision Tree 20% 0.3674 0.3638 0.7735 0.5247 0.5484

50% 0.3743 0.3684 0.6494 0.4345 0.5271

Mean Test Accuracy by Random Forest 20% 0.3668 0.3678 0.7855 0.5742 0.5401

50% 0.372 0.3678 0.6517 0.4743 0.5692

KNN GAIN HexaGAN HexaGAN-Swish

Mean Test RMSE 20% 3.7544 2.0776 0.0927 0.0422 0.0392

Mean Test Accuracy by KNN 20% 4e-05 5e-05 0.7624 0.4621 0.4729

Mean Test Accuracy by Decision Tree 20% 0.00011 0.0002 0.8234 0.5571 0.5738

Mean Test Accuracy by Random Forest 20% 0.00014 0.0001 0.861 0.581 0.6219
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We also tweak the architecture of HexaGAN replacing 
ReLU activation layers with Swish activation layers as 
demonstrated in Table 1. In the introductory paper of Swish 
[27], the authors have pointed out reasons why Swish may 
outperform ReLU. Swish is bounded below and unbounded 
above. This constrains extremely negative values to be zeroed 
whereas, in ReLU, all negative values are zeroed. ReLU, 

Swish might be able to, in case the values are not extremely 
negative. Experimental results mentioned in Table 5, 6 and 
7 demonstrates that Swish performs better than ReLU when 
applied to HexaGAN as the mean test RMSE for HexaGAN-
Swish is lower. In terms of RMSE, for every 10 times, the 

Fig. 2. Test RMSE for Nurse Care-Accelerometer Dataset against 

approaches increases with the increase of the missing rate 
for Nurse Care-Accelerometer dataset. Despite the high 
rate of missing values, the slope of the line for GAN-based 
approach is much less than conventional methods, i.e., 
KNN and MICE. The line for GAIN is parallel with the 
line for HexaGAN and HexaGAN-Swish. HexaGAN and 
HexaGAN-Swish almost coincide along every point.

Fig. 3. Comparison of RMSE and Accuracy for Nurse Care-

50% missing data is imputed

We have also analyzed the comparative performance 
improvement for each method. KNN is a state-of-the-art 
method for imputation. We compare the performance of 
MICE, GAIN, HexaGAN, and HexaGAN-Swish with KNN 
(number of k-neighbors is considered as 10) in terms of 
RMSE of the imputed data from the real complete data. From 
Figure 3, we see MICE has seen a degradation of 8.07% rather 
than improvement. Lowering the number of k-neighbors in 
KNN, enables MICE to outperform KNN. The GAN-based 
approaches (GAIN, HexaGAN, and HexaGAN-Swish) have 
shown above 90% improvement.

Accuracy: To further assess the imputation performance, 
we align the imputed data with their corresponding labels 
(activity numbers) and used three state-of-the-art pre-trained 

trained on completed labeled data i.e., data with no missing 
values. The test data contains both original data and imputed 

From Tables 5, 6 and 7, it is evident that GAIN consistently 
gives the highest accuracy value. HexaGAN provides a 
slightly better score than data generated by HexaGAN-
Swish for the accelerometer dataset. However for meditag 
(Table 6) and KU-HAR (Table 7) data, HexaGAN-Swish 
produces a higher value of accuracy. In Figure 3, we show 
the improvement in accuracy considering the accuracy on 
KNN as baseline.

found using GAN-imputed data is better than the accuracy 
obtained using real and complete data (0% missing rate). For 

when missing rate is 50%. Meanwhile, the accuracy using 
real data are 17.73%, 17.5% and 17.88 % for KNN, Decision 

that GAN-based approaches have the ability to predict the 

noise inherent in real data.

Missing data imputation techniques are proposed to 

an improvement among notable existing approaches, 
the imputation task was performed on two datasets from 
CARE-COM Nurse Care Activity Recognition Datasets. An 
additional obstacle introduced by the two datasets is that nurse 
care activity concerns an action performed by one person on 
another person. To be straightforward, the imputation model 
faces the challenge of imputing values that will abide by the 
complex feature-label relationship. The third dataset, KU-
HAR has simpler feature-label relationships in comparison 
being a data on individual activity with no external agent 
dependency.
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We carried out the imputation task using KNN, MICE, 

Like its precedent attempts [4], HexaGAN outperformed 
the others. Intending to investigate ways of doing better, 
we tweaked the architecture of HexaGAN by replacing the 
existing ReLU activation functions with the Swish activation 
function. The motivation behind doing so is that we wanted 
to assess whether non-extreme negatives values that are 
converted to zero by ReLU activation function in the original 
HexaGAN framework bear any meaning or feature which 
could improve the imputation performance. Swish, unlike 
ReLU, handles negative data by forcing extreme negative 
values to zero but accommodating non-extreme negative 
values.

the Swish activation function outperforms the original. In 

the original 6 out of 10 times. This evokes the possibility 

recommends further investigation to gather more evidence.

Furthermore, to examine whether GAN-imputed data 
respects the expected behavior of their original labels 
(activity numbers), we used three state-of-the-art pre-trained 

to calculate the accuracy of imputation. Our results show that 
the accuracy ranges from 26%-43% for GAN-imputed data 

The phenomenon summons the possibility of GAN-centric 

data as well as class imbalance problem which is prevalent 
in Nurse Care-Accuracy and Nurse Care- Meditag datasets. 

report accuracy, Random Forest-based Learning-To-Rank 
Algorithms (LtR) studied in previous works [31, 32] may be 
considered for assessment of performance of imputed data 
when training data is subject to class imbalance.

This research has been supported by the ICT Division, 
Government of the People’s Republic of Bangladesh through 
the ICT Innovation Fund for the year 2020-21.
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