
https://doi.org/10.3329/dujase.v7i1.62880 DUJASE Vol. 7 (1) 1-8, 2022 (January)

*

*E-mail: bsse0832@iit.du.ac.bd

Received on 20 March 2021, Accepted for publication on 13 October 2021

ABSTRACT

of the collection, Nurse Care Activity Recognition Dataset. Our investigation suggests that HexaGAN learns the original

is lower. To investigate the role of activation function, we replace the underlying ReLU activation functions of the neural

version of HexaGAN possesses the potential to outperform the original one when applied to the same activity recognition
datasets.

Keywords: Generative Adversarial Networks, GANs, Missing Data, Imputation, Deep Learning.

1. Introduction

While meticulous approaches are used during the collection
of real-world data, gathering real-world data without any
missing values remains a challenging task. Diligently
collecting data does not guarantee the absence of missing
values within data [1]. The missing values within data may or
may not exhibit distinctive patterns. These patterns can be used
to map relations between the observable and non-observable
variables. According to [2], based on the exhibition of patterns
or simply, the distribution of missing values, missing data

at Random (MCAR), Missing at Random (MAR), Missing
Not At Random (MNAR). For MCAR data, the missing
values do not show any particular behavior or pattern. No
conclusion can be drawn or variable-to-variable mapping can
be extracted in such circumstances. When data is missing
at random, the observable variables resemble some pattern.
When data is MNAR, both observable and non-observable
variables bear particular characteristics. Regardless of the
category of missing data, its presence makes a considerably
huge volume of data to become unusable for machine
learning-oriented studies and degrades the performance of
machine-learning models. Imputation techniques are needed
to prevent vast portions of data from becoming unusable for
machine-learning-oriented tasks.

While imputation techniques using Generative Adversarial
Networks (GANs) [3] have been recently gaining attention [4,
5, 6], conventional approaches are still widely recognized as
the state-of-the-art [7, 8, 9, 10]. Conventional or adversarial,
whichever category the imputation techniques fall under,
face a major challenge when the amount of available
complete data is considerably low. Conversely saying, when
the missing rate of data is as high as 80%-90%, imputation
performance begins to degrade. The purpose of this study

imputation models can contribute to better imputation

change of activation functions on HexaGAN, an imputation
model based on Generative Adversarial Networks. For the
imputation task, two activity recognition datasets from the
CARE- COM Nurse Care Dataset [26] collection is selected.
The activity recognition task itself is deemed challenging
because it requires actions performed by an agent (nurse)
on another agent (patient) to be characterized based on the

Recognition (HAR) dataset is extracted from a subset of KU-
HAR [30] which originally contains data belonging to 18
categories of simple human activities like standing, sitting,
running, walking, and lying.

Our contribution can be stated as follows:

imputation performance.

Comparison among four existing approaches with the
newly proposed approach.

of missing data.

List of possible impacts of activation functions (ReLU
versus Swish) on imputation tasks.

Building an imputation model for a challenging activity
recognition dataset in the MCAR missing data scenario.

models, we performed imputation on two nurse care activity
recognition datasets and one simple human activity datasets,

assess the deviation between the original data and the
imputed values. We also prepared a test dataset containing
complete and imputed data and calculated the accuracy

Decision Tree, and Random Forest) to investigate if the
imputed data aligns with the correct target class. Motivated

2

by the performance of HexaGAN [4], our experiment was
extended to modifying the architecture of HexaGAN by
substituting the ReLU activation function within the neural
network architecture of HexaGAN, with the Swish activation
function and computing the root mean square error (RMSE)

original, 6 out of 10 times.

The remainder of this paper is organized as follows: Section
2 provides related work, followed by the Methodology in
Section 3 and Experiment Setup in Section 4. Results are
discussed in Section 5. Lastly, Section 6 drops a concluding
note and future direction.

Before Generative Adversarial Networks (GANs)
demonstrated game-changing performance in imputation
tasks, conventional approaches competed with each other
to be crowned state-of-the art of missing data imputation
tasks. K-Nearest Neighbors [7], Matrix Completion [8],
Multivariate Imputation by Chained Equations (MICE) [9],
Denoising Autoencoders [10] fall in the second category.

, commonly known as KNN, is

computed and compared with the nearest k neighbors.
KNN was implemented as an imputation technique for
DNA microarrays in [7]. Experimental results in [7] have
shown KNN to be robust to the percentage of missing data
with a deviation of 6-26% from real values and was thus
recommended as a standard approach.

takes a multi-step approach. [9] shows the
demonstration of version 2.9 of MICE on a simple dataset

dataset are made and in each copy, the missing values are
imputed temporarily based on the available remaining data.
The mean for each of the independent variables in the dataset
are computed and used for temporarily imputing for each
of the corresponding independent variables. Next, taking
other independent variables as features, values for another
independent variable are predicted. This process is repeated
until the dataset has statistical estimates (predictions) for all
independent variables. To put it simply, MICE focuses on
imputing one variable at a time using features of the other
variables present in the data.

GAN
vanilla GAN architecture. The most basic GAN architecture
constitutes a Generator Network and a Discriminator
Network. The generator model outputs fake samples from
random noise to replicate the original data distribution.
The Discriminator Model attempts to aid the generator by
monitoring the samples produced by the generator. The
Discriminator does this by identifying the fake samples from
the real ones and dispatching feedback to the generator in

the form of a loss function value. Using this loss value, a
generator improves its performance. Some noteworthy
variations of GANs include WGAN [12], StyleGAN [13],
CycleGAN [14], LSGAN [15] and CGAN [16]. Initially
intended to generate images, the applications of GANs have
extended to interesting use- cases such as face-manipulation,
image-to-image translation, text-to-image translation, video
prediction [17] and missing data imputation.

GAIN
Network-oriented approach to the missing data problem.
Following GAIN, other GAN-oriented solutions have been
proposed from time to time, for example, MISGAN [5]
and HexaGAN [4]. The target of the generator in GAIN is
to generate a vector of imputed values taking the real data
vector with missing values, corresponding mask (indicator
of missing values), and noise as input to the generator. The
discriminator is given the task to identify which components
are real and which components are imputed. The GAIN

world datasets from the UCI machine learning repository
(Breast, Spam, Letter, Credit, and News) [18] by predicting
the mask vector.

HexaGAN [4] framework, overall, addresses three real-
world problems simultaneously: missing data, class
imbalance, and missing labels. Of the six components, three
are involved in the missing data problem: the encoder and
one set of generator-discriminator. In addition to MNIST
handwritten dataset, HexaGAN was used to impute data
from the UCI machine learning repository similar to GAIN
[6]. The working mechanism of HexaGAN would be futher
discussed in the following section.

GAIN-GTEx is another follow-up of GAIN with some
additional leverages for gene expression imputation [19].
Stackelberg GAN takes note of mode collapse and drop-
ping issues of GAN by using multiple generators instead
of the standard single generator [20]. High missing rates
of data are considered in GAMIN [21] which also presents

handles the complicated nature of images by converting
the image imputation problem to a multi-domain image-
to-image translation task. This enables the missing data to
be successfully estimated using the remaining clean data
set. An approach to impute temporal information or multi-
stage information is given by end-to-end generative model
E2

Unit [24] with GAN for multivariate time series imputation.
SciGAN [25] framework has been proposed for scRNA
sequence imputations by alleviating the previous problems
of oversmoothening and removal of cell-to-cell stochasticity.
Other works on imputation based on GAN include [26] and
[27]. For a comprehensive study on the use of GANs for
missing data imputation, the reader can refer to [28].

3

In our work, we take the initiative to draw a comparison
between four existing imputation techniques, namely, KNN,
MICE, GAIN, and HexaGAN primarily and then, being
motivated by the performance of HexaGAN, we modify
the architecture of the underlying neural network that might
result in a boost to the imputation performance. HexaGAN
[4] is based on Generative Adversarial Networks (GANs).
GANs are deep learning-based techniques that learn the
underlying data distribution and thus can be used in data
imputation tasks. For the purpose of imputation, we borrow
three elements from HexaGAN, which are: the Encoder, the
Generator, and the Discriminator, all of which are neural
networks.

Fig. 1. Overview of models working together

Activation functions in the underlying layers of HexaGAN

Encoder Generator Discriminator

HexaGAN Hidden=ReLU
Output=ReLU

Hidden=ReLU
Output=Sigmoid

Hidden=ReLU
Output=None

Hexa-
GAN-Swish

Hidden=Swish
Output=Swish

Hidden=Swish
Output=Sigmoid

Hidden=Swish
Output=none

Activation functions equip neural networks with the ability
to handle non-linear data. It determines which neuron will

forward propagation. ReLU, Sigmoid function, and Tanh
functions are the most widely used activation functions,
especially ReLU. ReLU is more like the de-facto standard.
In 2017, Google Brain has brought a new activation function
into the arena- the Swish Activation Function [29]. Swish is

values. In the case of ReLU, all negative values are zeroed.
Meanwhile, Swish zeroes values that are extremely negative.
To put it simply, Swish accommodates a more few negative
input values as non-zero, in comparison to ReLU. There is a
possibility that these small negative values carry information

approach.

functions of neural network layers from the original neural
network architecture of HexaGAN using bold fonts.

Training Process: Suppose X is a complete data vector, m is
a mask vector indicating the position of missing elements
and is a noise vector. The dimensions of all the vectors are
equal. By element-wise multiplication of X and m, an
incomplete data vector i.e. data vector with missing values is
obtained. The encoder takes X, m and as input and
computes x . Equation 1 shows the computation of x similar
to [4].

 1 (1)

The encoder E uses x as shown in Figure 1 in generating a

hidden variable h. The generator takes X, x ,m and h as

input to give imputed data vector . Equation 2 shows the

computation of similar to [4]. Now the discriminator tries

to distinguish between imputed data vector and complete

data vector X. Training continues until training loss is
converged.

 (2)

Algorithm 1: Missing Data Imputation

Input x - data with missing values

m - vector indicating missing elements

- noise vector sampled from U(0,1)

Output - imputed data

 repeat

Sample a batch of pairs ()

1

E(x , m)

 x G (h)

x x +(1-m)

x +(1-m) x

Update Discriminator D using Stochastic
Gradient Descent (SGD)

Update Encoder E and Generator G using SGD

1 reconE G

1

 until Training loss is converged

Algorithm 1 (originally proposed in [b4]) describes missing
data imputation and the corresponding model training. The
two lines of pseudocode shown within the box indicate the

4

point where we tweak the network in order to investigate

4. Experiment Setup: Dataset Description and Pre-
processing

Nurse Care Activity Recognition Dataset: The collection
consists of 3 datasets. The datasets are records on six
nursing care activities which is available at (https://ieee-
dataport.org/competitions/nurse-care- activity-recognition-
challenge). Information of these six activities along with
their corresponding labels and frequencies are given in
Tables 2 and 3. Three sensor de- vices were used to record
these activities: motion capture sensor, meditag sensor, and
accelerometer sensor. The data collected by three sensors are

we experimented with the data collected by the accelerometer
sensor and the meditag sensor.

Accelerometer Dataset: The accelerometer sensor which
was positioned in the right chest pocket of the nurse collects
the x, y, and z coordinates of the respective point. Details of
the dataset are noted down in Table 2.

Classes of data with corresponding frequencies for
Nurse Care-Accelerometer Dataset

Activity Description Activity

Vital Signs Measurement 2 7382

Blood Collection 3 9839

Blood Glucose Measurement 4 6142

Drip Retention & Connection 6 3744

Oral Care 9 5410

Diaper Exchange & Cleaning 12 7466

Total= - 39983

Meditag Dataset : The meditag sensor notes down the two
dimensional positions, x and y of a bluetooth device which
the nurse carries in his/her chest pocket and the air pressure
in mHg. Details of the dataset are noted down in Table 3.

Classes of data with corresponding frequencies for
Nurse Care-Meditag Dataset

Activity Description Activity

Vital Signs Measurement 2 2393

Blood Collection 3 2843

Blood Glucose Measurement 4 2009

Drip Retention & Connection 6 1571

Oral Care 9 1619

Diaper Exchange & Cleaning 12 4717

Total= - 15152

Classes of data with corresponding frequencies for
KU-HAR Dataset

Activity Description Activity

Stand 0 10000

Sit 1 10000

Lay 5 10000

Walk 11 10000

Run 14 10000

Total= - 50000

KU-HAR Dataset: This Human Activity Recognition (HAR)

smartphone sensors (Accelerometer and Gyroscope). For the
experiment, out of 18 classes we used 10,000 data from each of
the 5 classes, namely, stand, sit, lay, walk, and run. A total of 8
features are used to describe an activity. These are- durations of
time for recording data by the Accelerometer and Gyroscope,
acceleration along X, Y, Z axes and rate of rotation around the
X, Y, Z axes. The dataset is available at (https://data.mendeley.
com/datasets/45f952y38r/3).

Pre-processing and Settings:
of missing values, 20%, 50%, and 80% were used in our
experiments. The 5 models were trained separately with each

was assessed.

5. Results and Discussion

To investigate the performance of four missing data imputation
techniques, i.e., KNN, MICE, GAIN, and HexaGAN, they
have been applied on three datasets described in the previous
section with varying missing rates. The performance
evaluation is primarily carried out by measuring the root
mean square error (RMSE) between the actual data values and
the imputed values. Experimental results show a reduction
in RMSE scores for GAN-based approaches such as GAIN,
HexaGAN, and HexaGAN-Swish; indicative of the imputed
values being closer to the actual data values. Next, 5-fold
cross-evaluation is conducted by computing the accuracy

forest) on test data containing both real data and imputed

data, which has been imputed by GANs gives higher scores
implying GANs implicitly learn the properties of original
data better. The knowledge of these properties, in turn, helps
to align data to its corresponding class.

Root Mean Square Error: Root Mean Square Error
(RMSE) is used to investigate the imputation performance

and the imputed data. 5-fold cross-validation is carried out

that RMSE values consistently show a decreasing trend for
GAN-based approaches across missing rates of 20%, 50%

5A Comparative Study of Missing Data Imputation Methods for Activity Recognition Task

and 80%. Lower RMSE values suggest that HexaGAN
learns the real data distribution better by at least 46.72%
even when the percentage of missing values in the dataset
can go as high as 80% (Table 5). The possible reason is the

underlying encoder. Encoders enable the overall architecture
to learn the data representations better.

KNN GAIN HexaGAN HexaGAN-Swish

Mean Test
RMSE

20% 1.142 0.1784 0.1452 0.0337 0.0355

50% 1.8893 2.0419 0.1741 0.0761 0.0701

80% 2.5598 2.7479 0.1971 0.1050 0.0981

Mean Test
Accuracy by
KNN

20% 0.1833 0.1802 0.2935 0.2754 0.269

50% 0.1852 0.183 0.2624 0.2602 0.2602

80% 0.1846 0.1889 0.2478 0.1803 0.1557

Mean Test
Accuracy by
Decision Tree

20% 0.1761 0.1741 0.4948 0.3363 0.3307

50% 0.1771 0.1785 0.4178 0.2511 0.2497

80% 0.1847 0.1717 0.382 0.2393 0.2262

Mean Test
Accuracy by
Random Forest

20% 0.1796 0.1787 0.4948 0.3363 0.3432

50% 0.1843 0.1863 0.4332 0.2582 0.2572

80% 0.1995 0.1943 0.3985 0.218 0.1672

KNN GAIN HexaGAN Hexa-
GAN-Swish

Mean Test RMSE 20% 0.6248 0.6685 0.3172 0.0853 0.0837

50% 1.0244 1.1307 0.2787 0.1530 0.1563

Mean Test Accuracy by KNN 20% 0.3337 0.337 0.6649 0.4325 0.501

50% 0.3382 0.3365 0.5618 0.3386 0.5279

Mean Test Accuracy by Decision Tree 20% 0.3674 0.3638 0.7735 0.5247 0.5484

50% 0.3743 0.3684 0.6494 0.4345 0.5271

Mean Test Accuracy by Random Forest 20% 0.3668 0.3678 0.7855 0.5742 0.5401

50% 0.372 0.3678 0.6517 0.4743 0.5692

KNN GAIN HexaGAN HexaGAN-Swish

Mean Test RMSE 20% 3.7544 2.0776 0.0927 0.0422 0.0392

Mean Test Accuracy by KNN 20% 4e-05 5e-05 0.7624 0.4621 0.4729

Mean Test Accuracy by Decision Tree 20% 0.00011 0.0002 0.8234 0.5571 0.5738

Mean Test Accuracy by Random Forest 20% 0.00014 0.0001 0.861 0.581 0.6219

6

We also tweak the architecture of HexaGAN replacing
ReLU activation layers with Swish activation layers as
demonstrated in Table 1. In the introductory paper of Swish
[27], the authors have pointed out reasons why Swish may
outperform ReLU. Swish is bounded below and unbounded
above. This constrains extremely negative values to be zeroed
whereas, in ReLU, all negative values are zeroed. ReLU,

Swish might be able to, in case the values are not extremely
negative. Experimental results mentioned in Table 5, 6 and
7 demonstrates that Swish performs better than ReLU when
applied to HexaGAN as the mean test RMSE for HexaGAN-
Swish is lower. In terms of RMSE, for every 10 times, the

Fig. 2. Test RMSE for Nurse Care-Accelerometer Dataset against

approaches increases with the increase of the missing rate
for Nurse Care-Accelerometer dataset. Despite the high
rate of missing values, the slope of the line for GAN-based
approach is much less than conventional methods, i.e.,
KNN and MICE. The line for GAIN is parallel with the
line for HexaGAN and HexaGAN-Swish. HexaGAN and
HexaGAN-Swish almost coincide along every point.

Fig. 3. Comparison of RMSE and Accuracy for Nurse Care-

50% missing data is imputed

We have also analyzed the comparative performance
improvement for each method. KNN is a state-of-the-art
method for imputation. We compare the performance of
MICE, GAIN, HexaGAN, and HexaGAN-Swish with KNN
(number of k-neighbors is considered as 10) in terms of
RMSE of the imputed data from the real complete data. From
Figure 3, we see MICE has seen a degradation of 8.07% rather
than improvement. Lowering the number of k-neighbors in
KNN, enables MICE to outperform KNN. The GAN-based
approaches (GAIN, HexaGAN, and HexaGAN-Swish) have
shown above 90% improvement.

Accuracy: To further assess the imputation performance,
we align the imputed data with their corresponding labels
(activity numbers) and used three state-of-the-art pre-trained

trained on completed labeled data i.e., data with no missing
values. The test data contains both original data and imputed

From Tables 5, 6 and 7, it is evident that GAIN consistently
gives the highest accuracy value. HexaGAN provides a
slightly better score than data generated by HexaGAN-
Swish for the accelerometer dataset. However for meditag
(Table 6) and KU-HAR (Table 7) data, HexaGAN-Swish
produces a higher value of accuracy. In Figure 3, we show
the improvement in accuracy considering the accuracy on
KNN as baseline.

found using GAN-imputed data is better than the accuracy
obtained using real and complete data (0% missing rate). For

when missing rate is 50%. Meanwhile, the accuracy using
real data are 17.73%, 17.5% and 17.88 % for KNN, Decision

that GAN-based approaches have the ability to predict the

noise inherent in real data.

Missing data imputation techniques are proposed to

an improvement among notable existing approaches,
the imputation task was performed on two datasets from
CARE-COM Nurse Care Activity Recognition Datasets. An
additional obstacle introduced by the two datasets is that nurse
care activity concerns an action performed by one person on
another person. To be straightforward, the imputation model
faces the challenge of imputing values that will abide by the
complex feature-label relationship. The third dataset, KU-
HAR has simpler feature-label relationships in comparison
being a data on individual activity with no external agent
dependency.

7A Comparative Study of Missing Data Imputation Methods for Activity Recognition Task

We carried out the imputation task using KNN, MICE,

Like its precedent attempts [4], HexaGAN outperformed
the others. Intending to investigate ways of doing better,
we tweaked the architecture of HexaGAN by replacing the
existing ReLU activation functions with the Swish activation
function. The motivation behind doing so is that we wanted
to assess whether non-extreme negatives values that are
converted to zero by ReLU activation function in the original
HexaGAN framework bear any meaning or feature which
could improve the imputation performance. Swish, unlike
ReLU, handles negative data by forcing extreme negative
values to zero but accommodating non-extreme negative
values.

the Swish activation function outperforms the original. In

the original 6 out of 10 times. This evokes the possibility

recommends further investigation to gather more evidence.

Furthermore, to examine whether GAN-imputed data
respects the expected behavior of their original labels
(activity numbers), we used three state-of-the-art pre-trained

to calculate the accuracy of imputation. Our results show that
the accuracy ranges from 26%-43% for GAN-imputed data

The phenomenon summons the possibility of GAN-centric

data as well as class imbalance problem which is prevalent
in Nurse Care-Accuracy and Nurse Care- Meditag datasets.

report accuracy, Random Forest-based Learning-To-Rank
Algorithms (LtR) studied in previous works [31, 32] may be
considered for assessment of performance of imputed data
when training data is subject to class imbalance.

This research has been supported by the ICT Division,
Government of the People’s Republic of Bangladesh through
the ICT Innovation Fund for the year 2020-21.

References

1 D. B. Rubin, “Inference and Missing Data,” ,
vol. 63, no. 3, p. 581, 1976, Available: https://doi.
org/10.2307/2335739.

2 S. van Buuren,
Edition. Second edition, CRC Press, 2019, Available: https://
doi.org/10.1201/9780429492259.

3 I. Goodfellow et al., “Generative Adversarial Nets,” 2014,
Available: https://doi.org/10.1145/3422622.

4 U. Hwang, D. Jung, and S. Yoon, “HexaGAN: Generative

5 S. C.-X. Li, B. Jiang, and B. M. Marlin, “MISGAN: Learning
from Incomplete Data with Generative Adversarial Networks,”
2019.

6 J. Yoon, J. Jordon, and M. van der Schaar, “Gain: Missing
Data Imputation Using Generative Adversarial Nets,” in

Learning, pp. 5689–5698, 2018

7 O. Troyanskaya et al., “Missing value estimation methods
for DNA microarrays,” , vol. 17, no. 6,
pp. 520–525, 2001, Available: https://doi.org/10.1093/
bioinformatics/17.6.520.

8 T. Hastie, R. Mazumder, J. D. Lee, and R. Zadeh, “Matrix
Completion and Low-rank SVD via Fast Alternating Least
Squares,” , vol.
16, no. 1, pp. 3367–3402, 2015.

9 S. van Buuren and K. Groothuis-Oudshoorn, “mice:
Multivariate Imputation by Chained Equations in R,” Journal
of Statistical Software, vol. 45, no. 3, 2011, Available: https://
doi.org/10.18637/jss.v045.i03.

10 P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
“Extracting and Composing Robust Features with Denoising
Autoencoders,” in

, pp. 096-
1103, 2008, [Online; accessed 16-February-2021]. Available:
https://doi.org/10.1145/1390156.1390294

11 Sozo Inoue, Paula Lago, Shingo Takeda, Alia Shamma,
Farina Faiz, Nattaya Mairittha, Tittaya Mairittha, “Nurse
Care Activity Recognition Challenge”, IEEE Dataport, 2019,
Available: https://dx.doi.org/10.21227/2cvj-bs21.s

12 M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,”
in , pp. 214–
223, 2017.

13 T. Karras, S. Laine, and T. Aila, “A Style-Based Generator
Architecture for Generative Adversarial Networks.” in

, pp. 4401-4410, 2019.

14 J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial
networks.” in Proceedings of the IEEE International

, pp. 2223-2232, 2017.

15 X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P.
Smolley ”Least squares generative adversarial networks.”
in

, 2017, pp. 2794-2802.

16 M. Mirza and S. Osindero, “Conditional Generative Adversarial
Nets,” 2014. [Online; accessed 16-February-2021]. Available:
https://doi.org/10.48550/arXiv.1411.1784

17 J. Brownlee, .
Machine Learning Mastery, 2019.

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

19 C. Li, K. Xu, J. Zhu, J. Liu and B. Zhang, “Triple Generative
Adversarial Networks,” in

, vol. 44, no. 12, pp.
9629-9640, 2022, Available: https://doi.org/10.1109/
TPAMI.2021.3127558.

8

20 H. Zhang, “Medical Missing Data Imputation by Stackelberg
GAN,” 2018. [Online; accessed 16-February-2021]. Available:
https://www.ml.cmu.edu/research/dap-papers/f18/dap-zhang-
hongyang.pdf

21 S. Yoon and S. Sull, “GAMIN: Generative Adversarial
Multiple Imputation Network for Highly Missing Data.”
in

, pp. 8456-8464, 2020.

22 D. Lee, J. Kim, W. Moon, and J. C. Ye, “CollaGAN:
Collaborative GAN for missing image data imputation.” in
P

, pp. 2487-2496, 2019.

23 Y. Luo, Y. Zhang, X. Cai, and X. Yuan,”E2GAN: End-to-End
Generative Adversarial Network for Multivariate Time Series
Imputation.” in Proceedings of the 28th International Joint

, AAAI Press, pp. 3094-
3100, 2019.

24 Y. Luo, X Cai, Y. Zhang, and J. Xu, “Multivariate time series
imputation with generative adversarial networks.” In Advances

, pp. 1596- 1607,
2018

25 Y. Xu, Z. Zhang, L. You, J. Liu, Z. Fan, and X. Zhou,
“scIGANs: single-cell RNA-seq imputation using generative
adversarial networks,” , Jun. 2020,
Available: https://doi.org/10.1093/nar/gkaa506

26 A. Kazemi and H. Meidani, “IGANI: Iterative Generative
Adversarial Networks for Imputation With Application to

IEEE Access, vol. 9, pp. 112966–112977,

2021,Available: https://doi.org/10.1109/access.2021.3103456.

27 R. Viñas, T. Azevedo, E. R. Gamazon, and P. Liò, “Deep
Learning Enables Fast and Accurate Imputation of Gene
Expression,” , vol. 12, Apr. 2021,
Available: https://doi.org/10.3389/fgene.2021.624128

28 J. Kim, D. Tae, and J. Seok, “A survey of missing data
imputation using generative adversarial networks”, In

, IEEE, pp. 454-
456, 2020.

29 P. Ramachandran, B. Zoph, and Q. Le, “Swish: A Self-Gated
Activation Function,” 2017.

for Human Activity Recognition”, 2020

31 Mendeley Data, V3, Available: https://doi.
org/10.17632/45f952y38r.3 [Online; accessed
16-February-2021].

32 M. Ibrahim ”Sampling non-relevant documents of training
sets for learning-to-rank algorithms.”, International Journal

, vol. 10, no. 2, 2020.

33 M. Ibrahim,” Reducing correlation of random forest
based learning-to-rank algorithms using subsample size”,

, vol. 35, no. 4, pp. 774-798, 2019.

