• Printed Journal
  • Indexed Journal
  • Peer Reviewed Journal
Journal of Applied Science & Engineering

Dhaka University Journal of Applied Science & Engineering

Issue: Vol. 7, No. 2, July 2022

InGaN Laser Diodes-Gain, Spectra and Nonlinear Dynamics

  • Nahid Hassan
    Dept. of Electrical and Electronic Engineering, University of Brahmanbaria, Bangladesh
  • Sazzad M.S. Imran*
    Dept. of Electrical and Electronic Engineering, University of Dhaka, Bangladesh

Device model, InGaN, intensity noise, mode competition, quantum noise, rate equation, semiconductor laser, violet-blue laser.


In this era, short-wavelength laser diodes with quantum-well (QW) structures offer plenty of opportunities for improvement in laser performance and receive widespread attention. Therefore, we develop dynamic model of the violet-blue InGaN laser diodes (LDs) and discuss basic features of the device in this paper. We investigate longitudinal mode dynamics through detail numerical simulation of the rate equation model of the quantum-well LDs. We selectively observe several effects such as relaxation oscillation, mode competition, intensity noise etc. From the dynamic behavior of the gain spectrum and time-varying modal photon numbers we found that the higher intensity noise of the quantum-well structure was due to random fluctuation with time among the different modes. The results were explained considering the previously published findings to confirm the validity of the proposed rate equation model of the quantum-well structures.

  1. D. Queren, A. Avramescu, G. Brüderl, A.Breidenassel, M. Schillgalies, S. Lutgen, and Unnnn bb. Straus, "500 nm electrically driven InGaN based laser diodes," Appl. Phys. Lett., vol. 94, no. 8, 2009.
  2. T. Miyoshi, S. Masui, T. Okada, T. Yanamoto,T. Kozaki, S.I. Nagahama, and T. Mukai, "510-515 nm InGaN-based green laser diodes on c-plane gan substrate," Appl. Phys. Express, vol. 2, 2009.
  3. S.Lutgen, A. Avramescu, T. Lermer, D. Queren,J. Müller, G. Bruederl, and U. Strauss, "True green InGaN laser diodes," Phys. Status Solidi A, vol. 207, no. 6, pp. 1318-1322, 2010
  4. A. Avramescu, T. Lermer, J. Müller, C. Eichler,G.Brüderl, M. Sabathil, S. Lutgen, and U. Strauss, "True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN," Appl. Phys. Express, vol. 3, no. 6, 2010
  5. H. König, M. Ali, W. Bergbauer, J. Brückner, G. Brüderl, C. Eichler, S. Gerhard, U. Heine, A. Lell, L. Naehle, M. Peter, J. Ristic, G. Rossbach, A. Somers, B. Stojetz, S. Tautz, J. Wagner, T. Wurm, U. Strauss, M. Baumann, A. Balck, and V. Krause, "Visible GaN laser diodes: from lowest thresholds to highest power levels," Proc. SPIE 10939, 2019
  6. L.A. Coldren, S.W. Corzine, and M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, Inc., 2012.
  7. K. Lüdge, M. J. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, and E. Schöll, "Turn-on dynamics and modulation response in semiconductor quantum dot lasers," Phys. Rev. B, vol. 78, no. 3, 2008
  8. M. Yamada, "Theory of mode competition noise in semiconductor injection lasers", IEEE J. of Quantum Electron., vol. 22, no. 7, pp. 1052-1059, 1986
  9. W. Tsang, "Heterostructure semiconductor laser’s prepared by molecular beam epitaxy," IEEE J. Quantum Electron., vol. QE-20, pp. 1119-1132, 1984.
  10. P.S. Zory, Jr., Quantum Well Lasers, Academic Press, New York, 1993.
  11. R. Dingle, A.C. Gossard, and W. Wiegmann, "Direct observation of super lattice formation in a semiconductor heterostructure," Phys. Rev, Lett., vol. 34, pp. 1327-1330, 1975
  12. P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegmann, and W.A. Nordland Jr., "Laser oscillation from quantum well states in very thin GaAl-A1GaAs multilayer structures," Appl. Phys. Lett., vol. 26, pp. 463-465, 1975
  13. N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, "Quantum-well heterostructure lasers," EEE J. Quantum Electron., pp. 170-181, 1980
  14. W.T. Tsang, "Extremely low threshold (A1Ga)As modified multiquantum well beterostructure lasers grown by molecular beam epitaxy," Appl. Phys. Lett., vol. 39, pp. 786-788, 1981
  15. T. Fujji, S. Yamakoshi, K. Nanbu, 0. Wada, and S. Hiyamizu, "MBE growth of extremely high-quality GaAs-AIGaAs GRIN-SCH lasers with a superlattice buffer layer," J. Vac. Sci. Technol., vol. 2, pp. 259-261, 1984
  16. R. Chin, N. Holonyak, Jr., B. A. Bojak, K. Hess, R. D. Dupuis, and P. D. Dapkus, "Temperature dependence of threshold current for quantum well AlGaAs-GaAs heterostructure laser diodes," Appl. Phys. Lett., vol. 36, pp. 19-21, 1979.
  17. K. Hess, B. A. Bojak, N. Holonyak, Jr., R. Chin, and P. D. Dapkus, "Temperature dependence of threshold current for a quantum-well heterostructure laser," Solid-State Electron., vol. 23, pp. 585-589, 1980
  18. Y. Arakawa and H. Sakaki, "Multiquantum well laser and its temperature dependence of the threshold current," Appl. Phys. Lett., vol. 45, pp. 950-952, 1984
  19. Y. Arakawa, K. Vahala, and A. Yariv, "Quantum noise and dynamics in quantum well and quantum wire lasers," Appl. Phys. Lett., vol. 45, pp. 939-941, 1982
  20. Y. Arakawa, and A. Yariv, "Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers," IEEE J. Quantum Electron., vol. QE-21, pp. 1666-1674, 1985
  21. Y. Arakawa, K. Vahala, and A. Yariv, "Dynamic and spectral properties in semiconductor lasers with quantum well and wire effects," presented at the 2nd Int. Conf. Modulated Semiconductor Structures, Kyoto, Japan, 1985
  22. K. Matsuoka, K. Saeki, E. Teraoka, M. Yamada, Y. Kuwamura, "Quantum noise and feedback noise in blue-violet InGaN semiconductor lasers," IEICE Trans. Electron., vol. E89-C, no. 3, 2006.
  23. M. Ahmed, "Theoretical modeling of intensity noise in InGaN semiconductor lasers", The Scientific World Journal, vol. 2014, id 475423, pp. 1-6, 2014
  24. L. Uhlig, M. Wachs, D.J. Kunzmann, U.T. Schwarz, "Spectraltemporal dynamics of (Al,In)GaN laser diodes", Optics Express, vol. 28, no. 2, 2020
  25. M. Ahmed, M. Yamada, and M. Saito, "Numerical modeling of intensity and phase noise in semiconductor lasers," IEEE J. Quantum Electron., vol. 37, no. 12, pp. 1600-1610, 2001
  26. K. Kojima, U. T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, "Optical gain spectra for near UV to aquamarine (Al, In)GaN laser diodes," Opt. Express, vol. 15, no. 12, pp. 7730-7736, 2007
  27. U. Straus, A. Avramescu, T. Lermer, D. Queren, A. Gomez- Iglesias, C. Eichler, J. Müller, G. Brüderl, and S. Lutgen, "Pros and cons of green InGaN laser on c-plane GaN," Phys. Status Solidi B, vol. 248, no. 3, pp. 652-657, 2011.
  28. W. Scheibenzuber, "GaN-based laser diodes: Towards longer wavelengths and short pulses," PhD Thesis, Universität Freiburg, 2011.
  29. W.G. Scheibenzuber and U.T. Schwarz, "Unequal pumping of quantum wells in GaN-based laser diodes," Appl. Phys. Express, vol. 5, no. 4, 2012
  30. M. Yamada, "Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers," J. Appl. Phys., vol. 66, no. 1, pp. 81-89, 1989
  31. S. Abdulrhmann, M. Ahmed, T. Okamoto, W. Ishimori and M. Yamada, "An improved analysis of semiconductor laser dynamics under strong optical feedback," IEEE J. Selected Topics in Quantum Electron., vol. 9, pp. 1265-1274, 2003.
  32. G. Ropars, A. Le Floch, and G. Agrawal, "Spectral and spatial dynamics in InGaN blue-violet lasers," Appl. Phys. Lett., vol. 89, no. 24, 2006.
  33. M.H. Chen, S.C. Hsiao, K.T. Shen, C.C. Tsai, and H.C. Chui, "The spectral mode evolution in a blue InGaN laser diode," Optik, vol. 186, pp. 41-45, 2019
  34. SMS Imran, M. Yamada, Y. Kuwamura, "A theoretical analysis of the optical feedback noise based on multimode model of semiconductor lasers," IEEE J. Quantum Electron., vol. 48, pp. 521-527, 2012
  35. C. Lee, C. Zhang, D.L. Becerra et. al., "Dynamic characteristics of 410 nm semipolar (2021) III-nitride laser diodes with a modulation bandwidth of over 5 GHz," Appl. Phys. Lett., vol. 109, pp. 101104, 2016.
  36. R.A. Abdullah, "The influence of gain suppression on dynamic characteristics of violet InGaN laser diodes", Optik – International Journal for Light and Electron Optics, vol. 125, no. 1, pp. 580-582, 2014.
  37. Z. Zhang, J. Yang, D. Zhao, F. Liang, P. Chen and Z. Liu, "Theoretical Optical Output Power Improvement of InGaNBased Violet Laser Diode Using AlGaN/GaN Composite Last Quantum Barrier," Nanomaterials, vol. 12, pp. 3990, 2022